TY - JOUR TI - Analysis of energy, exergy, environmental and economics (4E) on photovoltaic-thermal collector system AU - Satpute Jitendra AU - Rajan John JN - Thermal Science PY - 2022 VL - 26 IS - 5 SP - 4233 EP - 4247 PT - Article AB - In this paper, a novel thermal absorber based photovoltaic-thermal system is presented. The thermal absorber is attached at the rear surface of photovoltaic, and water is re-circulated to extract heat. The outdoor experimentations are performed at Pune, India (18.7611° N, 73.5572°) on clear sky day, and water temperatures, surface temperature, radiation and flow rate are measured to analyse techno-economical performance at different operating conditions. The surface temperature of the photovoltaic module plummeted from 54.65°C to 47.9°C with the incorporation of a thermal absorber with flipside water cooling at a ranging flow rate of 0.03 to 0.06 kg per seconds. The result shows an average enhancement of 4.2 % in the electrical power output of the photovoltaic-thermal system. The maximum thermal and electrical efficiencies were 47.82 % and 9.88 %, respectively, at 0.06 kg per seconds. The exergy efficiency was found in the range of 9.85-14.30%. Based on the experimental evaluation, uncertainty analysis was performed. The results revealed that the annual CO2 mitigation for photovoltaic and photovoltaic-thermal system was 225.46 kg annual and 464.8 kg annual, while simple payback periods were 4.53 years 3.03 years, respectively. The analysis offers an efficient estimate of experimental features of photovoltaic and photovoltaic-thermal systems from an energy-exergy, environmental and cost-benefit standpoint.