TY - JOUR TI - Dynamic numerical study on phase change thermal storage heat transfer AU - Cui Jie AU - Wang Guofeng AU - Guo Zhitang AU - Yang Shuo AU - Pan Honggang AU - Shi Jianjun AU - Xu Youning JN - Thermal Science PY - 2021 VL - 25 IS - 6 SP - 4171 EP - 4179 PT - Article AB - Targeted at the poor heat transfer effect of the phase change thermal storage heat exchanger due to the low thermal conductivity of the phase change material, a fin-tube type phase change thermal storage heat exchanger has been proposed in the study. A 2-D model of the phase-change heat storage unit was established, and the dynamic heat transfer law of the melting and solidification of the phase change material, and the influence of the fin structure size on the heat storage/release performance of the heat exchanger were numerically analyzed. The results show that in the area close to the tube wall, the smaller the fin spacing, the larger the thickness, the faster the phase change heat storage/release speed, and the better heat transfer effect. In the central area of the phase change material, the greater the fin spacing and thickness, and the better the heat transfer effect of the phase change heat storage/release. The area close to the outer wall has the smallest temperature change, and the heat storage/release effect is the worst. Therefore, the use of energy storage heat exchangers with gradual fin thickness and spacing is an effective method to improve the heat transfer efficiency of existing equipment. In addition, in order to improve the heat exchange effect of the edge area of the phase change, its structure could be changed or the heat exchange form can be increased.