TY - JOUR
TI - Thermal-mechanical characteristics of stationary and pulsating gas-flows in a gas-dynamic system: In relation the exhaust system of an engine
AU - Plotnikov Leonid
JN - Thermal Science
PY - 2022
VL - 26
IS - 1
SP - 363
EP - 374
PT - Article
AB - It is a relevant objective in thermal physics and in building reciprocating internal combustion engines (RICE) to obtain new information about the thermal-mechanical characteristics of both stationary and pulsating gas-flows in a complex gas-dynamic system. The article discusses the physical features of the gas dynamics and heat transfer of flows along the length of a gas-dynamic system typical for RICE exhaust systems. Both an experimental set-up and experimental techniques are described. An indirect method for determining the local heat transfer coefficient of gas-flows in pipe-lines with a constant temperature hot-wire anemometer is proposed. The regularities of changes in the instantaneous values of the flow rate and the local heat transfer coefficient in time for stationary and pulsating gas-flows in different elements of the gas-dynamic system are obtained. The regularities of the change in the turbulence number of stationary and pulsating gas-flows along the length of reciprocating internal combustion engines gas-dynamic systems are established (it is shown that the turbulence number for a pulsating gas-flow is 1.3-2.1 times higher than for a stationary flow). The regularities of changes in the heat transfer coefficient along the length of the engine’s gas-dynamic system for stationary and pulsating gas-flows were identified (it was established that the heat transfer coefficient for a stationary flow is 1.05-1.4 times higher than for a pulsating flow). Empirical equations are obtained to determine the turbulence number and heat transfer coefficient along the length of the gas-dynamic system.