TY - JOUR TI - Entropy production minimization in a multicomponent diabatic distillation column AU - Spasojević Momčilo Đ AU - Janković Milovan R AU - Đaković Damir D JN - Thermal Science PY - 2020 VL - 24 IS - 3 SP - 2256 EP - 2266 PT - Article AB - This work presents a procedure for direct numerical minimization of entropy production in a diabatic tray column with heat exchanged on the trays as control variables, as opposed to previously used procedures with temperature on the trays as control variables. The procedure, which had previously been demonstrated on a binary mixture, was in this work applied to a multicomponent mixture, with minor modifications. The procedure comprised the complex optimization method and the Ishii-Otto method for solving the equations of a column model based on the iterative Newton-Raphson technique with partial linearization of the equations. The desired separation of the components was realized by the addition of a penalty function to the goal function, i.e. entropy production in the column. The required thermodynamic characteristics were calculated by the Soave equation of state. As an illustration, an industrial debutanizer with five components was used whose data, obtained by simulation, were compared with the optimization results of a diabatic column with the same desired separation and number of trays. After the diabatic column optimization procedure, the value of 91.91 J/Ks was obtained as the best result for entropy production. According to the best solution, entropy production in the diabatic column was 23.2% lower than in the adiabatic column. The heat to be removed from the column increased by 24.7%, while the heat to be added to the column increased by 28.8%.