TY - JOUR
TI - Optimization of artillery projectiles base drag reduction using hot base flow
AU - Dali Mohammed Amin
AU - Jaramaz Slobodan S
JN - Thermal Science
PY - 2019
VL - 23
IS - 1
SP - 353
EP - 364
PT - Article
AB - The CFD numerical simulations were carried out to investigate the base drag characteristics of a projectile with base bleed unit with a central jet. Different base bleed grain types with different combustion temperatures were used. The goal was to find a way to effectively control the base flow for base drag reduction and optimisate the latter using an adequate CFD software. Axisymmetric, compressible, mass-averaged Navier-Stokes equations are solved using the k-ω SST, transition k-kl-ω, and RSM turbulence models. The various base flow characteristics are obtained by the change in the non-dimensionalized injection impulse. The results obtained through the present study show that there is an optimum bleed condition for all base bleed grains tested. That optimum is dependent on the temperature of the grain combustion products. The optimum reduces the total drag for 6,9% in the case of air injection at temperature of 300 K and reaches up to 28% in the case of propellant combustion products injection at almost 2500 K. Besides, the increasing of molecular weight has a role no less important than temperature of the combustion products in terms of base drag reduction.