TY - JOUR TI - NUMERICAL INVESTIGATION OF NUCLEATE POOL BOILING HEAT TRANSFER AU - Stojanović Andrijana D AU - Stevanović Vladimir D AU - Petrović Milan M AU - Živković Dragoljub S JN - Thermal Science PY - 2016 VL - 20 IS - 15 SP - 1301 EP - 1312 PT - Article AB - Multi-dimensional numerical simulation of the atmospheric saturated pool boil-ing is performed. The applied modelling and numerical methods enable a full representation of the liquid and vapour two-phase mixture behaviour on the heated surface, with included prediction of the swell level and heated wall temperature field. In this way the integral behaviour of nucleate pool boiling is simulated. The micro conditions of bubble generation at the heated wall surface are modelled by the bubble nucleation site density, the liquid wetting contact angle and the bubble grow time. The bubble nucleation sites are randomly located within zones of equal size, where the number of zones equals the nucleation site density. The conjugate heat transfer from the heated wall to the liquid is taken in-to account in wetted heated wall areas around bubble nucleation sites. The boiling curve relation between the heat flux and the heated wall surface temperature in excess of the saturation temperature is predicted for the pool boiling conditions reported in the literature and a good agreement is achieved with experimentally measured data. The influence of the nucleation site density on the boiling curve characteristic is confirmed. In addition, the influence of the heat flux intensity on the spatial effects of vapour generation and two-phase flow are shown, such as the increase of the swell level position and the reduced wetting of the heated wall surface by the heat flux increase.