TY - JOUR TI - Study of convection heat transfer enhancement inside lid driven cavity utilizing fins and nanofluid AU - Lavasani Arash Mirabdolah AU - Farhadi Mousa AU - Darzi Ahmad Ali Rabienataj JN - Thermal Science PY - 2017 VL - 21 IS - 6 SP - 2431 EP - 2442 PT - Article AB - In the present study, the effect of suspension of nanoparticle on mixed convection flow is investigated numerically in lid driven cavity with fins on its hot surface. Study is carried out for Richardson numbers ranging from 0.1 to 10, fin(s) height ratio change from 0.05 to 0.15 and volume fraction of nanoparticles from 0 to 0.03, respectively. The thermal conductivity ratio (kfin/kf) is equal to 330 and Grashof number is assumed to be constant (104) so that the Richardson numbers changes with Reynolds number. Results show that the heat transfer enhances by using nanofluid for all studied Richardson numbers. Adding fins on hot wall has different effects on heat transfer depend to Richardson number and height of fins. Use of low height fin in flow with high Richardson number enhances the heat transfer rate while by increasing the height of fin the heat transfer reduces even lower than it for pure fluid. The overall enhancement in Nusselt number by adding 3% nanoparticles and 3 fins is 54% at Ri=10. They cause reduction of Nusselt Number by 25% at Ri=0.1. Higher fins decrease the heat transfer due to blocking fluid at corners of fins.