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In this study, we present a steady 3-D magnetohydrodynamic flow and heat 
transfer characteristics of a viscous fluid due to a bidirectional stretching sheet 
in a porous medium. The heat transfer analysis has been carried out for two 
heating processes namely (1) the prescribed surface temperature and (2) 
prescribed surface heat flux. In addition the heat transfer rate varies along the 
surface. The similarity solution of the governing boundary layer partial differen-
tial equations is developed by employing homotopy analysis method. The 
quantities of interest are velocity, temperature, skin-friction, and wall heat flux. 
The results obtained are presented through graphs and tabular data. It is 
observed that both velocity and boundary layer thickness decreases by increasing 
the porosity and magnetic field. This shows that application of magnetic and 
porous medium cause a control on the boundary layer thickness. Moreover, the 
results are also compared with the existing values in the literature and found in 
excellent agreement. 

Key words: viscous fluid, magnetohydrodinamics flow, porous medium, variable 
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Introduction 

The boundary layer flows and heat transfer of Newtonian fluids over a continuously 

stretching surface have many important applications in several engineering and industrial 

processes. Examples include the extrusion of a polymer sheets from a die or in the drawing of 

plastic films, the boundary layer along a liquid film condensation process, the cooling process 

of metallic plate in a cooling bath, cooling of continuous strips, aerodynamic extrusion of 

plastic sheets, crystal growing, and many others. After the pioneering work of Sakiadis [1, 2] 

the boundary layer flow induced by a stretching sheet has been studied by many researchers 

[3-13] and for Newtonian fluids under various aspects of the flow phenomenon. 
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All the above mentioned studies were limited to 2-D boundary layer problems for 

linear stretching surface in one direction. Wang [14] discussed 3-D flow of a viscous fluid due 

to the stretching of the elastic surface in two lateral directions. He applied the direct numerical 

integration to the resulting boundary value problem. Laha et al. [15] studied the heat transfer 

analysis of the 3-D flow of a viscous fluid caused by a stretching sheet with uniform tension 

in two horizontal directions by considering a constant temperature and uniform heat flux. 

Recently, Ariel [16] presented the generalized 3-D flow due to a stretching sheet and 

demonstrated that the resulting problem admits a solution in term of series of exponentially 

decaying functions. Recently, Liu et al. [17] investigated the heat transfer characteristics over 

a bidirectional stretching sheet with variable thermal conditions in the presence of a 

temperature-dependent internal heat source (or sink). Very recently, Abdullah [18] discussed 

the analytical solution of heat and mass transfer for 3-D flow over a permeable stretching 

surface by considering the effects of chemical reaction, internal heat, Dufour-Soret and Hall 

current. 

In all previous work done by the researchers [1-18], they did not consider the effects 

of applied magnetic filed over a bidirectional stretching surface in a porous medium. 

Therefore, the main purpose of the present paper is to extend the problem of Liu et al. [17] in 

three directions namely (1) to consider the effects of an applied magnetic filed under the low 

magnetic Reynolds number approximation (2) to analyze the flow in a porous medium, and 

(3) to provide an analytic solution to the non-linear problem using homotopy analysis method 

(HAM). The analytic series solution is developed using HAM [19, 20]. This technique has 

already been successfully applied to various problems [21-28] . To the best of our knowledge, 

no such analytical solution has previously been reported for magnetohydrodinamics (MHD) 

flow of a viscous fluid over a bidirectional stretching surface in a porous medium. 

Basic equations 

Consider the steady 3-D boundary layer flow of an incompressible hydromagnetic 

viscous fluid in a porous medium due to a stretching surface in  a  plane  at z = 0. The surface 

is stretched uniformly in both horizontal directions with velocity components ax and by in x- 

and y-directions, respectively. A uniform magnetic field 0B  is applied parallel to z-direction. 

The effects of the induced magnetic field is neglected, which is a valid assumption on a 

laboratory scale under the assumption of low magnetic Reynolds number. It is also assumed 

that the external electric field is zero. Under the usual boundary layer approximations the 

MHD flow of a viscous fluid is governed by equations: 
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where u, n, and w are the velocity components in the x-, y- and z-directions, respectively, r is 

the fluid density, n – the kinematic viscosity, s – the electrical conductivity of the fluid, f1 – 

the porosity, k – the permeability of the porous medium, T – the temperature, cp – the specific 

heat capacity at constant pressure of the fluid, k1 – the thermal diffusivity of the fluid, and the 

last term in eq. (4) represents a temperature-dependent heat source (q > 0) or sink (q < 0). In 

eqs. (2) and (3) the pressure gradient is neglected because it is assumed that flow is caused 

only by the stretching of the sheet. This assumption is also consistent with the conditions at 

the free stream. Furthermore, the Darcy's law has been employed for obtaining the governing 

equations in a porous medium. 

The appropriate boundary conditions of the problem are given by: 

where a > 0 and b > 0 are constant stretching rates with dimension [s
–1

] in x- and y-directions, 

respectively. 

For temperature we have two sets of boundary conditions: 

Case a: Prescribed surface temperature (PST) 
 

 
Case b: Prescribed surface heat flux (PHF) 

 

 
where l is the thermal conductivity of the fluid, T – the constant temperature outside the 

thermal boundary layer, and A and B are positive constants. The power indices r and s 

determine how the temperature or the heat flux at the sheet varies in the xy-plane. 

Defining the similarity transformations: 

 
where primes denote the differentiation with respect to h. Substituting eq. (8) into eq. (2), it is 

satisfied automatically and from eqs. (3) and (4) become: 
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and the boundary conditions (5)-(7) give: 

 

 
and a = b/a is the stretching ratio. Here e = f1/rak is the dimensionless porosity parameter, 

M
2
 = s

2
0B /ar – the magnetic parameter, Pr = n/k1 – the Prandtl number, and b = q/racp – the 

internal heat parameter. 

The physical quantities of interest are the skin friction coefficients along the x- and 

y-directions, Cfx and Cfy, which are defined as: 
 

 
where twx and twy are the wall shear stress along the x- and y-directions, respectively. In 

dimensionless form we get: 

 
where Rex = uwx/n is the local Reynolds number. 

Homotopy analysis solution 

For the analytical solution, eqs. (9) to (13) are solved by employing HAM. 

Therefore, the velocity and temperature distributions f(h), g(h), q(h), and f(h) can be 

expressed by the set of base functions: 
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m,nd  are coefficients. Based on the rule of solution expressions and 

the boundary conditions (13), the initial approximations f0(h), g0(h), q0(h), and f0(h) of the 

functions f(h), g(h), q(h), and f(h) are: 
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and the auxiliary linear operators are: 

 

 

satisfying 

 

 
and Ci  (i = 1, 2…5) are arbitrary constants. From eqs. (9)-(12), the non-linear operators Nf, 

Ng, Nq, and Nf, are defined by the following expressions: 
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If ( [0,1])p  is the embedding parameter and f, g, q, and f are the non-zero 

auxiliary parameters, respectively, the zeroth-order deformation problems are: 
 

 

 

 

 

 

  
Note that for p = 0 and p = 1, the zeroth-order deformation eqs. (33)-(36) have the 

following solutions: 
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Due to Taylor's theorem and above expressions, the power series are: 
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Obviously eqs. (33)-(36) contain four non-zero auxiliary parameters f, g, q, and 

f. Assuming that f, g, q, and f are chosen in such a way that the series in eqs. (43) and 

(46) are convergent at p = 1. Employing eqs. (39)-(42) we get: 
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Equations (51) to (56) have the general solutions in the forms: 
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using Mathematica one after the other in the order m = 1, 2, 3… 

Convergence of the HAM solutions 

As pointed out by Liu et al. [17] that the solutions series given by the eqs. (47)-(50) 
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Figure 1. The -curves of f (0), g (0), (0), and 

(0) at the 15th order of approximation 
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Results and discussion 

We have obtained the velocity and temperature profiles f , g ,  and  in the form of series 

given in eqs. (47)-(50). In order to see the influence of the salient features of the involved 

parameters on the velocity and temperature profiles, we plot figs. (2-9). 

 

Figure 2 shows the effects of porosity parameter  on the velocity components f ¢ and 

g¢ when a = 0.5 and M = 0.5. It is noted that both the velocity components f ¢ and g ¢ are 

decreased by increasing the values of the porosity parameter e. The boundary layer thickness 

also decreases for large values of e. Figure 3 gives the variation of the velocity f ¢and g ¢for 

different values of the magnetic parameter M by keeping a = 0.5 and e = 0.5 fixed. It can be 

seen from this figure that the influence of the magnetic field causes to reduce the boundary 

layer thickness. As expected, the magnetic force is a resistance to the flow, hence reduces the 

velocity magnitude of f ¢and g ¢, respectively. The dimensionless velocity components f ¢and g ¢ 

presented in fig. 4 give the influences of the stretching ratio a. It is observed from fig. 4(a) 

that the velocity f ¢decreases with increasing values of the stretching ratio a, while the velocity 

g ¢increases by increasing the values of a as in fig. 4(b). 

 
 

 
Figure 2. Velocity profiles f ¢(h) and g’(h) vs. h for different values of porosity parameter e with a = 0.5 
and M = 0.5 

 

 

Figure 3. Velocity profiles f ¢(h) and g’(h) vs. h for different values of magnetic parameter M  with  
a = 0.5 and e = 0.5 
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Figure 4. Velocity profiles f ¢(h) and g’(h) vs. h for different values of stretching ratio a with 
M = 0.5, e = 0.5 

 

Figure 5 shows the effects of the magnetic parameter M on the dimensionless 

temperature profiles q and f by keeping a = 0.5 and e = 0.5 fixed. The temperature profiles 

increase with increasing the values of the magnetic parameter M in both the cases of the PST 

and PHF, respectively. It is also noted that this increment is slightly larger in case of PHF. 

Figure 6 elucidates the influences of the stretching ratio a on the temperature profiles q and f 

for the case of (r = s = 1) and Pr = 1 with e = 0.5 and M = 0.5. It is observed that the 

temperature profile decreases with increasing values of the stretching ratio a in both the cases 

of the PST and PHF. It is also observed that the thermal boundary layer is decreased for large 

values of the stretching ratio a. It is further noted that these results are in qualitatively similar 

with the temperature profiles shown by Liu et al. [17] in the presence of the magnetic field  

and  porous  medium. Figure 7 shows the effects of the power indices r on the temperatures q 

and f in case of s = 0 with M = 0.5 and e = 0.5 keeping fixed. It is noted that as we increase 

the values of r both the temperature profiles and the thermal boundary layer thickness are 

decreased. From fig. 7, it can also be seen that the temperature rises above the sheet 

temperature for r = –3 and r = –2 and than decreases as the distance in the x-direction from 

the  origin  increases  and  the  heat flux is therefore directed from the fluid to the sheet, rather 

 
Figure 5. Temperature profiles q(h) and f(h) vs. h for different values of magnetic parameter M  with 

a = 0.5 and e = 0.5 
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than in the common direction from the sheet to the fluid as for r > –1 as mentioned in Liu et 
al. [17] in the presence of the magnetic field and porous medium, but the change in 

temperature is smaller in case of M = e  0. Figure 8 gives the influences of the power  

indices s on the temperature when the sheet temperature is uniform in the x-direction (r = 0) 

 

 
Figure 6. Temperature profiles q(h) and f(h) vs. h for different values of stretching ratio a 
with M = 0.5 and e = 0.5 

 

 
Figure 7. Temperature profiles q(h) and f(h) vs. h for different values r with  M = 0.5, e = 0.5,  
and a = 0.5 

 
Figure 8. Temperature profiles q(h) and f(h) vs. h for different values s with  M = 0.5, e = 0.5,  
and a = 0.5 
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with M = 0.5, and e = 0.5 keeping fixed. The temperature and the thermal boundary layer 
thickness are decreased as we increase the values of s from s = –3 to s = 3. Figure 9. shows 
the effects of the heat source/sink parameter b on the temperatures q and f with Pr = 1, r = s = 
1, M = 0.5, a = 0.5, and e = 0.5. As expected, the temperature increases with increasing heat 
source b > 0 and decreases in the case of heat sink b < 0 in both cases of PST and PHF. 

 
 

 
Figure 9. Temperature profiles q(h) and f(h) vs. h for different values b with 
M = 0.5, e = 0.5, and a = 0.5 

 
Table 1 shows the numerical values of f″(0), g″(0), f(), and g(), for hydrodynami-

cal problem in absence of magnetic field M = 1 and porous medium e = 0. It is noted that the 
magnitudes of the shear stresses at the wall f″(0) and g″(0), in the x-and y-directions are 
increased by increasing the values of the stretching ratio a. It is further noted that the present 
results of HAM are compared with the data given by Wang [14] and Liu et al. [17] and found 
in excellent agreement. 

 
Table 1. Numerical values of f″ (0), g″(0), f(), and g() when e = 0 and M = 0 

  f ″(0) g″(0) f() g() 

Wang [14]  –1 0 1 0 

Lui et al. [17] a = 0.0 –1 0 1 0 

HAM  –1 0 1 0 

Wang [14]  –1.048813 –0.194564 0.907075 0.257986 

Lui et al. [17] a = 0.25 –1.048813 –0.194565 0.907067 0.257966 

HAM  –1.048811 –0.194564 0.907046 0.257993 

Wang [14]  –1.093097 –0.465205 0.842360 0.451671 

Lui et al. [17] a = 0.50 –1.093096 –0.465206 0.842361 0.451663 

HAM  –1.093095 –0.465205 0.842386 0.451677 

Wang [14]  –1.134485 –0.794622 0.792308 0.612049 

Lui et al. [17] a = 0.75 –1.134486 –0.794619 0.792293 0.612128 

HAM  –1.134486 –0.794618 0.792302 0.612135 

Wang [14]  –1.173720 –1.173720 0.751527 0.751527 

Lui et al. [17] a = 1.0 –1.173721 –1.173721 0.751494 0.751494 

HAM  –1.173721 –1.173721 0.751497 0.751497 
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Table 2 is made to give the numerical values of f″(0), g″(0), f(), and g() and in the 

presence of the magnetic field M ¹ 0 and porous medium e ¹ 0. It is observed that the 

magnitudes of the shear stresses at the wall f″(0) and g (0) are larger in case of (M ¹ 0 and e ¹ 

¹ 0) as compared to the case M = e = 0. Table 3 shows the values of the temperature gradient 

at the surface q¢(0) for different values of r and s with b = 0 and Pr = 1 in case of M = e = 0. It 

is found that the temperature gradient at the surface  q¢(0) becomes positive and decreases for 

r = –2 and s = 0 and negative for r = 0 and s =–2. It is also noted that the present results 

obtained by HAM has a good agreement with the numerical results given by Liu et al. [17]. 

Table 4 gives the values of the temperature gradient at the surface q¢(0) for different values of 

r and s with b = 0 and Pr = 1 in the presence of the magnetic field M = 5 and porosity 

parameter e = 0.2. It is observed that the temperature gradient at the surface q¢(0) has the same 

behavior in case of M = 0.5 and e = 0.2, but its magnitude is smaller in this case when 

compared with the case of M = e = 0. Table 5 gives the numerical values of the temperature 

gradient  
 

               Table 2. Numerical values of f″ (0), g″(0), f(), and g() when e = 0.5 and M = 0.5 

 f ″(0) g″(0) f() g() 

 = 0.0 –1.204159 0 0.830455 0 

 = 0.25 –1.242674 –0.255757 0.778887 0.212809 

 = 0.50 –1.279160 –0.571163 0.737905 0.388412 

 = 0.75 –1.314085 –0.937135 0.703896 0.540092 

 = 1.0 –1.347728 –1.347728 0.674873 0.674873 

 
Table 3. Temperature gradient at the surface q¢(0) for selected values of r and s 

with b = 0, e = 0 = M, and Pr = 1 

  r = 0, s = 0 r = –2, s = 0 r = 2, s = 0 r = 0, s = –2 r = 0, s = 2 

Ref. [17] 
a = 0.25 

–0.665933 0.554512 –1.364890 –0413111 –0.883125 

Present –0.665927 0.554573 –1.364890 –0413101 –0.883123 

Ref. [17] 
a = 0.50 

–0.735334 0.308578 –1.395356 –0.263381 –1.106491 

Present –0.735333 0.308590 –1.395357 –0.263376 –1.106500 

Ref. [17] 
a = 0.75 

–0.796472 0.135471 –1.425038 –0.126679 –1.292003 

Present –0.796470 0.135470 –1.425037 –0.126680 –1.292010 

  
           Table 4. Temperature gradient at the surface q (0) for selected values of r and s  
           with b = 0, e = 0.2, M = 0.5, and Pr = 1 

 r = 0, s = 0 r = –2, s = 0 r = 2, s = 0 r = 0, s = –2 r = 0, s = 2 

 = 0.25 –0.625146 0.500062 –1.311314 –0.388527 –0.832651 

 = 0.50 –0.696653 0.287065 –1.345355 –0.249419 –1.057183 

 = 0.75 –0.759970 0.128083 –1.378118 –0.120535 –1.245219 
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Table 5. Temperature gradient at the surface q¢(0) and f(0) for selected values of Pr and b 

with e = 0, M = 0, r = 1, s = 1, and a = 0.5 

 
q¢(0) for PST f(0) for PHF 

b = –0.2 b = 0 b = 0.2 b = –0.2 b = 0 b = 0.2 

Ref. [17] 
Pr = 1 

–1.348064 –1.255781 –1.148932 0.741805 0.796317 0.870355 

Present –1.348064 –1.255780 –1.148934 0.741808 0.796318 0.870372 

Ref. [17] 
Pr = 5 

–3.330392 –3.170979 –3.002380 0.300265 0.315360 0.333069 

Present –3.330394 –3.170981 –3.002384 0.3002657 0.315363 0.333071 

Ref. [17] 
Pr = 10 

–4.812149 –4.597141 –4.371512 0.207807 0.217527 0.228754 

Present –4.812151 –4.597143 –4371516 0.207809 0.217529 0.228756 

 

at the surface q¢(0) and f(0) for different values of Pr and b with a = 0.5, s = 1, r = 1, and M = 

= e = 0. The magnitude of the temperature gradient at the surface q¢(0) increases by increasing 

the values of Pr and –q(0) reduces with increasing values of b. It is also noted from this table 

that in case of PHF at the sheet, a heat source (sink) tends to reduce the sheet temperature 

f(0). Table 6 shows the numerical values of the temperature gradient at the surface q¢(0) and 

f(0) for different values of Pr and b with a = 0.5, s = 1, r = 1 in case of M = = 5 and e = 0.2. It 

is noted that the magnitude of the temperature gradient at the surface q¢(0) is smaller, whereas 

the sheet temperature f(0) in case of prescribed heat flux at the sheet is larger quantitatively in 

the presence of magnetic field M = 0.5 and porosity parameter e = 0.2. 

 
Table 6. Temperature gradient at the surface q¢(0) and f(0) for selected values of Pr and b 
with e = 0.2, M = 0.5, r = 1.0, s = 1, and a = 0.5 

  q¢(0) for PST   f(0) for PHF  

 b = –0.2 b = 0 b = 0.2 b = –0.2 b = 0 b = 0.2 

Pr = 1 –1.306568 –1.205991 –1.082238 0.765364 0.829193 0.923981 

Pr = 5 –3.234749 –3.094872 –3.000234 0.304281 0.320426 0.337240 

Pr = 10 –4.702361 –4.436862 –4.315217 0.210176 0.226381 0.231123 

Conclusions 

The MHD 3-D flow and heat transfer characteristics of a viscous fluid due to a 

bidirectional stretching sheet through a porous medium is investigated in this paper. For the 

heat transfer analysis the heating processes of (1) the PST and (2) PHF are taken into account. 

The influence of the various parameters of interest are analyzed through the similarity 

solution of the governing equations. The main findings of the present study are: 

 boundary layer thickness is a decreasing function of porosity parameter and the Hartman 

number, 

 thermal boundary layer increases by increasing the values of porosity parameter and 

applied magnetic field, 

 both temperature and thermal boundary layer thickness are decreased when the Prandtl 

number increases, and 

 the heat flux through the wall decreases by an increase in the internal heat parameter b. 
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Nomenclature 

A, B –  positive constants 
a, b –  constants stretching rates, [s–1] 

0B  –  magnetic field, [T] 
cp –  specific heat at constant pressure, [Jkg–1K–1] 
f, g –  real functions 
f, g, q, f–  non-zero auxiliary parameters 
k  –  permeability of the porous medium, [m2] 
k1 –  thermal diffusivity, [ms–1] 
L1, L2 –  auxiliary linear operators 
M2 –  Hartman number, (= s 2

0B /ar) 

Nf, Ng, Nq, Nf –  non-linear operators 
p –  the embedding parameter 
Pr –  Prandtl number, (=n/k1), [–] 
q –  heat source or sink, [W] 
r, s –  power indices, [m] 
Re –  Reynolds number, [–] 

T –  temperature of the fluid, [K] 
Tw –  temperature at the surface of the plate, [K] 
T –  temperature of the ambient fluid, [K] 
u, n, w –  velocities in x-, y-, and 
 –  z-direction, [ms–1] 
x, y , z –  spatial co-ordinates, [m] 

Greeks symbols 

a –  the stretching ratio (= b/a), [–] 
b –  diemnsionless internal heat parameter  
 –  (= q/racp), [–] 

 

e –  dimensionless porosity parameter 
 –  (= f1/rak), [–] 
h –  similarity variable, [–] 
q –  dimensionless temperature, 
 –  (T – T)/(Tw – T), [–] 
l –  thermal conductivity of the fluid, [Wm–1K–1] 
m –  dynamic viscosity, [kgm–1s–1] 
n –  kinematic viscosity, [m2s–1] 
r –  fluid density, [kgm–3] 
f –  dimensionless temperature for PHF, [–] 
f1 –  porosity of the porous medium 
s –  electrical conductivity of the fluid, [sm–1] 

Subscripts 

i –  arbitrary constants 
f, g, q, f –  indications for the functions f, g, q, f 
p –  constant pressure 
w –  surface conditions 
1 –  porous medium 
 –  conditions far away from the surface 

Acronyms 

PHF –  presscribed surface heat flux 
PST –  prescribed surface temperature 
HAM –  homotopy analysis method 

References 

[1] Sakiadis, B. C., Boundary Layer behavior on Continuous Solid Surface, I. Boundary Layer Equation 
for Two-Dimensional and Axisymmetric Flow, AIChE J., 7 (1961), 1, pp. 26-28 

[2] Sakiadis, B. C., Boundary Layer behavior on Continuous Solid Surface, II. Boundary Layer Equations 
on Continuous Solid Surface, AIChE J., 7 (1961), 2, pp. 221-225 

[3] McCormack, P. D., Crane, L., Physical Fluid Dynamics, Academic Press, New York, USA, 1973 
[4] Gupta, P. S., Gupta, A. S., Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing, 

Can. J. Chem. Eng., 55 (1977), 6, pp. 744-756 
[5] Cortell, R., Similarity Solutions for Flow and Heat Transfer in a Viscoelastic Fluid over a Stretching 

Sheet, Int. J. Non-Linear Mech., 29 (1994), 2, pp. 155-161 
[6] Vleggaar, J., Laminar Boundary Layer behaviour on Continuous Accelerating Surface, Chem. Eng. 

Sci., 32 (1977), 12, pp. 1517-1525 
[7] Dutta, B. K., Roy, P., Gupta. A. S., Temperature Field in a Flow over a Stretching Sheet with Uniform 

Heat Flux, Int. Commun. Heat Mass Transfer, 12 (1985), 1, pp.89-94 
[8] Magyari, E., Keller, B., Exact Solutions for Self-Similar Boundary-Layer Flows Induced by Permeable 

Stretching Walls, Eur. J. Mech.B-Fluids, 19 (2000), 1, pp. 109-122 
[9] Crane, L., Flow Past a Stretching Plate, Z. Angew Math. Phys., 4 (1970), 21, pp. 645-647 
[10] Banks, W. H. H., Similarity Solutions of the Boundary Layer Equations for a Stretching Wall, J. Mech 

Theor. Appl., 2 (1983), 3, pp. 375-392 
[11] Ali, M. E., Heat Transfer Characteristics of a Continuous Stretching Surface, Heat and Mass Transfer, 

29 (1994), 4, pp. 227-234 
[12] Hayat, T., Sajid, M., Analytic Solution for Axisymmetric Flow and Heat Transfer of a Second Grade 

Fluid Past a Stretching Sheet, Int. J. Heat Mass Transfer, 50 (2007), 1-2, pp. 75-84 



Ahmad, I., et al.: Hydromagnetic Flow and Heat Transfer over a Bidirectional … 
220  THERMAL SCIENCE, Year 2011, Vol. 15, Suppl. 2, pp. S205-S220 
 

[13] Kumar, H., Radiation Heat Transfer with Hydromagnetic Flow and Viscous Dissipation over a 
Stetching Surface in the Presence of Variable Heat Flux, Thermal Science, 13 (2009), 2, pp. 163-169 

[14] Wang, C. Y., The Three Dimensional Flow Due to Stretching Surface, Phys. Fluids, 27 (1984), pp. 
1915-1917 

[15] Laha, M. K., Gupta, P. S., Gupta, A. S., Heat Transfer Characteristics of the Flow of an Incompressible 
Viscous Fluid over a Stretching Sheet, Heat and Mas Transfer, 24 (1998), 3, pp. 151-153 

[16] Ariel, P. D., Generalized Three Dimensional Flow Due to Stretching Surface, Z. Angew. Math. Mech, 
83 (2003), 12, pp. 844-852 

[17] Liu, I.-C., Andersson, H. I., Heat Transfer over a Bidirectional Stretching Sheet with Variable Thermal 
Conditions, Int. J. Heat Mass Transfer, 51 (2008), 15-16, pp. 4018-4024 

[18] Abdullah, I. A., Analytic Solution of Heat and Mass Transfer over a Permeable Stretching Plate 
Affected by Chemical Reaction, Internal Heating, Dufour-Soret Effect and Hall Effect, Thermal 
Science, 13 (2009), 2, pp. 183-197 

[19] Liao, S. J., Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman & Hall, Boca 
Raton, Fla., USA, 2003 

[20] Liao, S. J., On the Homotopy Analysis Method for Nonlinear Problems, Appl. Math. Comput., 147 
(2004), 2, pp. 499-513 

[21] Sajid, M., Hayat, T., Asghar, S., On the Analytic Solution of the Steady Flow of a Fourth Grade Fluid, 
Phys. Lett. A, 355 (2008), 1, pp. 18-24 

[22] Abbas, Z., Sajid, M., Hayat, T., MHD Boundary Layer Flow of an Upper-Convected Maxwell Fluid in 
a Channel, Theor. Comput. Fluid. Dyn., 20 (2006), 4, pp. 229-238 

[23] Liao, S. J., A Uniformly Valid Analytic Solution of 2-D Viscous Flow Past a Semi-Infinite Flat Plate, 
J. Fluid Mech., 385 (1999), 1, pp. 101-128 

[24] Liao, S. J., Campo, A., Analytic Solutions of the Temperature Distribution in Blasius Viscous Flow 
Problems, J. Fluid Mech., 453 (2002), pp. 411-425 

[25] Cheng, J., Liao, S. J., Pop, I., Analytic Series Solution for Unsteady Mixed Convection Boundary 
Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium, Transport in Porous 
Media, 61 (2005), 3, pp. 365-379 

[26] Yang, C., Liao, S. J., On the Explicit Purely Analytic Solution of Von Karman Swirling Viscous Flow, 
Comm. Non-linear Sci. Numer. Simm., 11 (2006), 1, pp. 83-93 

[27] Abbasbandy, S., Homotopy Analysis Method for Heat Radiation Equations, Int. Comm. Heat and Mass 
Transfer, 34 (2007), 3, pp. 380-387 

[28] Hayat, T., Sajid, M., Ayub, M., A Note on Series Solution for Generalized Couette Flow, Comm. Non-
linear Sci. Numer. Simm., 12 (2007), 8, pp. 1481-1487 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Paper submitted: September 26, 2010 
Paper revised: January 20, 2011 
Paper accepted: January 23, 2011 


