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This paper is devoted to the analysis of unsteady plane laminar magneto-

hydrodynamic boundary layer flow of incompressible and variable electrical 

conductivity fluid. The present magnetic field is homogeneous and perpendicular 

to the body surface. Outer electric filed is neglected and magnetic Reynolds 

number is significantly lower then one i. e. considered problem is in induction-

less approximation. Free stream velocity is an arbitrary differentiable function. 

Fluid electrical conductivity is decreasing function of velocity ratio. In order to 

solve the described problem multi-parametric (generalized similarity) method is 

used and so-called universal equations are obtained. Obtained universal 

equations are solved numerically in appropriate approximation and a part of 

obtained results is given in the form of figures and corresponding conclusions. 
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Introduction 

The problem of boundary-layer separation and control has attracted considerable 

attention over several decades because of the fundamental flow physics and technological 

applications. Some of the essential ideas related to boundary-layer separation and the need to 

prevent the same from occurring have been addressed by Prandtl [1]. A number of methods 

may be employed to control the boundary layer separation that occurs due to the adverse 

pressure gradient: admit the body motion in stream-wise direction, increasing the boundary 

layer velocity, boundary layer suction, second gas injection, body cooling, introducing a 

transverse magnetic field, etc.  

Interest in effect of outer magnetic field on heat-physical processes appears sixty 

years ago [2]. The study of magneto-hydrodynamic flow of an electrically conducting fluid 
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past an arbitrary shape surface has attracted the interest of many researchers in view of its 

important applications in many engineering problems.  

Recently the problem of magneto-hydrodynamic (MHD) flow over surfaces has 

become more important due to the possibility of applications in areas like nuclear fusion, 

chemical engineering, medicine, and high-speed, noiseless printing. Problem of MHD flow in 

the vicinity of plate has been studied intensively by a number of investigators [3-7]. Most of 

previous investigations were concerned with studies of the steady flow of fluid whose 

electrical conductivity is constant.  

The subject of the present research is to give an analytic investigation to the problem 

of unsteady laminar MHD boundary layer flow of a viscous incompressible fluid. The 

external magnetic field is homogeneous and perpendicular to the body. The fluid which forms 

the boundary layer is incompressible and its electrical conductivity is variable and can be 

assumed in the following form: 

  0 1 0

n
u

, n
U

 
 

    
 

¥  (1) 

where: u  – stream-wise velocity in the boundary layer, U  –  free stream velocity,  ℕ – the set 

of natural numbers. It should be noted that the free stream velocity is an arbitrary 

differentiable function of the coordinate x  and time t . 

Mathematical model 

The problem in question is considered in an induction less approximation, and its 

mathematical model is expressed by the following equations: 

 
2

2

1 for 0

1 for

n

u
NU n

Uu u u U U u
u v U

t x y t x y u
NU n

U



  
   

        
       

              
¥

 (2) 

 0
u v

x y

 
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and the boundary and initial conditions:  

  0 0 for 0 foru ,v y ; u U x,t y      (4) 

    1 0 0 0for foru u x, y t t u u t, y x x     (5) 

In the equations (2) and (3) and in the boundary and initial conditions (4) and (5) the 

parameter labeling used is common for the theory of MHD boundary layer: y  – transversal 

coordinate, v  – transversal velocity in the boundary layer,   – kinematic viscosity of fluid,  
2N B  ,  B  – magnetic field induction,    – density of fluid,   1u x, y  – velocity 
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distribution in the boundary layer at the moment  
0t t ,   0u t , y  – velocity distribution in 

the cross section  
0x x   of the boundary layer. 

Generalized similarity method 

For the analysis of the described problem it is necessary to solve the system of 

equations (2)-(3) with the corresponding boundary and initial conditions (4)-(5), which can be 

done by using different numerical methods. The system of equations can be solved for 

specific values of the parameter n , magnetic induction, and for given function of the free 

stream velocity. The results thus obtained, and on the basis of which conclusions can be 

drawn, pertain only to that particular case of the boundary layer. By the same token, for every 

other particular case of the boundary layer, a complete calculation would have to be made 

anew.  

For further studying of the problem in this paper, the ideas of generalized similarity 

method have been used [8-10] which is extended in papers [11, 12].  This method leads to the 

so-called universal equation of the described problem, and its universal solution enable 

drawing general conclusions on the development of the boundary layer, and can be also used 

for calculations concerning particular cases of the boundary layer. It should be noted that the 

obtained universal equation has to be solved only once, and that the obtained universal results 

can be conveniently stored and reused. This method proved to be valid for different problems 

of the boundary layer [13-17], which recommends it for further employment.  

Following the ideas expressed in [8], we take into consideration the stream function 

 x, y,t    by the relations:  

 v , u
x y

  
  

 
 (6) 

which transform the system of equations (2)-(3) into the equation: 
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 (7) 

and the boundary (4) and initial conditions (5) into conditions:  

  0 0 for 0 for, y ; U x,t y
y y

 


 
    

 
 (8) 

    1 0 0 0for foru x,y t t ; u t, y x x
y y

  
   

 
 (9) 

By introducing new variables:  
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where:  h x,t  – a certain characteristic linear size of the transversal coordinate in the 

boundary layer, D  – standardization constant, the equation (7) is transformed into the 

equation:  
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where the following marks have been used:  
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The corresponding boundary conditions are:  

 0 0 for 0 1 for, ;
 

  
 

 
    
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 (13) 

Now we introduce sets of parameters; 

 dynamical: 

  1 0 1 2 0
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 magnetic: 
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 and the constant parameter: 

 
z

g const.
t


 


 (16) 

where the constant in the equation (16) may take different values. Sets of these independent 

parameters reflect the nature of free stream velocity change, alteration characteristic of 

variable N , and a part from that, in the integral form (by means of z  and /z t  ) pre-history 

of flow in boundary layer.  
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The first parameters of the sets are:  

 
1 0 0 1 1 0, , ,

U z U
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 
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 
 (17) 

The introduced parameters allow further transformation of the differential equation 

(11) into a universal form. It is a universal form in the sense that neither the equation, nor the 

corresponding boundary conditions will not explicitly depend on the free stream velocity and 

outer magnetic field.  

In order to obtain universal equation the following differential operator is used:  
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where the derivations of parameters with respect to x  and t  are determined by immediate 

differentiation of the expressions (14) and (15) and they have the forms:  
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where:  
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Using the parameters (14)-(16), differential operator (18) and expressions (19)-(23), 

the equation (11) is transformed to the form:  
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From the equation (24) can be seen, that the characteristics of external flow 

dominate by the means of function F . In order the equation (24) to be independent of the 

outer flow characteristics i. e. to be universal, it is necessary to show the existence of the 

equality: 

  k ,n k ,nF F f ,g  (25) 

In order to show that we start from the impulse equation of the discussed problem:  
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Introducing the parameters given by equations (14)-(16) into the equation (26), and 

using the following values:  
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equation (26) is transformed into a new form out of which the function F  can be expressed 

as: 
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It can be noted from the expression (35) that the function F  depends only on the 

introduced parameters (14)-(16). The equation (24) does not contain the free stream velocity 

distribution and external magnetic field, which defines each particular case of the considered 

flow and for a selected change in electrical conductivity – power n , this mathematical model 

is considered to be universal. The corresponding boundary conditions, also universal, have the 

following form:  

 0 0 for 0 1 for, ;
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where   0   – is Blasius solution for laminar flat-plate boundary layer.  

The boundary-layer equation is generalized such that the equation and the boundary 

conditions are independent of the particular conditions of the problem, i. e. obtained equations 

and corresponding boundary conditions are the same for all possible values of functions  U   

and  N .  

Numerical integration of the equation (24) with boundary conditions (37) and (38) is 

carried out once for all, taking on the right side of the equation (24) a finite number of terms. 

Thus obtained ''universal'' results are used to draw general conclusions on the development of 

the boundary layer, as well as to calculate particular cases.  

Before integration of the universal equation, a characteristic value should be selected 

for scale  ,h x t of transversal coordinate in boundary layer. In this case it is convenient to 

select the value h   , and according to the equations (31) and (32), /H H      and 

1H  . The equation (35) is now reduced to the following form:  
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Further in this paper, adequate approximation of equation (24) is given in which 

influence of the parameters
1, 0f ;

0, 1f ;  
1, 0g  and g  are detained, and the influence of all other 

parameters and their derivates are disregarded. The equation (24) in the so-called four-

parameter twice localized approximation has the form of:  
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1, 0 1, 0 1, 0 1, 0 1, 0 1, 0

1, 0 1, 0

; ;g f g F f X f g X g
f g

 
 

 

  
            

 (40) 

where   is the left-hand side of the equation (24). The function F , in the same 

approximation, is obtained from the equation (39) and has the form of:  

 
1, 0 0, 1 1, 0 1, 0 1, 0 1, 0

1, 0 1, 0

1
2 2

2

H H
F f f g H f g H g f g

f g
 
    

                  

 (41) 

The corresponding boundary conditions obtained from the conditions (37) and (28) 

are given with the following equations:  

 0 , 0 for 0; 1 for
 

  
 

 
    

 
 (42) 

  0 1, 0 0, 1 1, 0for 0; 0; 0; 0f f g g        (43) 

The value of the constant D  is 0.47D  , and it is determined by matching the 

equation (40) with equation of the stationary boundary layer on a flat plate [1].  

Results 

The equation (40) with the boundary conditions (42) and (43) is solved using three-

diagonal method, known in the East literature as the "progonka" method, for  0n   and 1n
. A part of the obtained results is presented in the figures 1,2,3,4,5 and 6. Figures 1,2 3 and 4 

show the results for 0n  , i. e. the case of constant electrical conductivity, and figures 5 and 

6 for 1n , i. e. the case of electrical conductivity change in the form of Rossow [18]. 

Figures 1 and 2 shows the variations of the variables  , F  and H  in function of 

the parameter  
1, 0f , for several values of the magnetic parameter  

1, 0g , and for values of the 

unsteadiness parameter 
0, 1 0.10f   and the constant parameter 0.05g  . It can be noticed 

that the magnetic parameter 
1, 0g  (magnetic field) influences considerably to the position of 

the boundary layer separation point. The increase in the magnetic parameter move the point of 

boundary layer separation downstream and in that sense its influence can be considered 
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positive. The functions F  and H   decrease with the increase of magnetic parameter value. 

These conclusions are drawn for the case of free stream acceleration (
0, 1 0f  ), as well as for 

free stream deceleration ( 
0, 1 0f  ).  

 

Figure 1. Variations of variables F,  in function 

of dynamic parameter 1 0,f  for different values of 

magnetic parameter 1 0,g  

 

Figure 2. Variations of variable H   in function 

of dynamic parameter 1 0,f  for different values 

of magnetic parameter 1 0,g  

 

Figure 3. Variations of variables F,  in function 

of dynamic parameter 1 0,f  for different values of 

unsteadiness parameter 0 1,f  

 

Figure 4. Variations of variables H  in function of 

dynamic parameter 1 0,f  for different values of 

unsteadiness parameter 0 1,f  

It can be noted from figure 5 that for the case of electrical conductivity change in the 

form of Rossow ( 1n ), the influence of magnetic field is negative, because the increase of 

magnetic parameter move the point of boundary layer separation upstream – towards the front 
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stagnation point. The function F  increases with the increase in parameter  
1, 0g  . This 

conclusion is valid both for free stream acceleration (
0, 1 0f  ), as well as for free stream 

deceleration (
0, 1 0f  ). 

Figures 3, 4 and 6 shows the graphs of characteristic functions for different values of 

the parameter
0, 1f . On the figures 3 and 4 parameters values are  

1, 0 0.02g  ;  0.05g  , and 

on the figure 6,  
1, 0 0.04g  ;  0.01g  . The results obtained for the case of constant electrical 

conductivity are shown in the figures 3 and 4, while the figure 6 give results for the case of 

variable electrical conductivity in the form of Rossow  1n  .  

It can be noticed from these figures that free stream acceleration causes a delay in 

boundary layer separation, i. e. it moves the boundary layer separation point downstream, 

while free stream deceleration moves the boundary layer separation point upstream. Thus the 

influence of free stream acceleration is positive and the influence of free stream deceleration 

is negative. These conclusions are valid also for other values of the magnetic parameter and 

parameter g  which have not been given in the figures. 

 

 

Figure 5. Variations of variables F,  in function 

of dynamic parameter 1 0,f  for different values of 

magnetic parameter 1 0,g  

 

Figure 6. Variations of variables F,  in function 

of dynamic parameter 1 0,f  for different values of 

unsteadiness parameter 0 1,f  

Conclusions 

In this paper unsteady plane laminar MHD boundary layer flow of incompressible 

and variable electrical conductivity fluid is considered. This problem can be analyzed for each 

particular case, i. e. for given free stream velocity. Here is used quite different approach in 

order to use benefits of generalized similarity method and universal equation of observed 

problem is derived. This equation is solved numerically in some approximation and 
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integration results are given in the form of diagrams and conclusions. The obtained results can 

be used to draw general conclusions on the boundary-layer development, as well as to 

calculate particular problems. 
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Nomenclature 

B   –  magnetic field induction [T]  

D   –  standardization constant [–] 

F   –  characteristic function [–]   

k ,nf   –  dynamical parameters [–] 

g   –  constant parameter [–] 

k ,ng   –  magnetic parameters [–] 

H   –  characteristic function  [–] 

H
  –  characteristic function [–] 

H
  –  characteristic function [–] 

N   –  characteristic function [s – 1]  

t   –  time [s] 

u,v   –  longitudinal and transversal velocity in 

                 boundary layer, respectively, [ms-1]  

U   –  free stream velocity [ms-1]   

x,y   –  longitudinal and transversal coordinate, 

                  respectively, [m]   

z           – characteristic function [s] 

 

Greek letters 

     –  displacement thickness [m]   

     –  momentum thickness [m] 

   –  dimensionless stream function [–] 

   –  dimensionless transversal coordinate  

                  [–] 

   –  viscosity [Pa s]  

   –  kinematic viscosity [m2s-1]   

   –  fluid density [kgm-3] 

   –  electrical conductivity [Sm-1] 

   –  shear stress [Pa]   

   –  stream function [m2s-1]   

   –  characteristic function [–]   

Subscripts and Superscripts 

0   –  initial time moment 

1           –   known boundary layer cross-section 
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