EXPERIMENTAL INVESTIGATION OF THERMOPHYSICAL PROPERTIES AND HEAT TRANSFER CHARACTERISTICS OF HYBRID NANOFLUIDS BASED ON PARTICLE SIZE

Ratchagaraja Dhairiyasamya*, Mohamed H. Ahmedb,c, Yasser Abdelrhmanc, Asif Afzald,e, Fadl A. Essaf, M. Alsehlig, Ayman A. Alyg, Bahaa Salehg,

aDepartment of Mechanical Engineering, University College of Engineering - Villupuram, Tamilnadu, India-605103
bMechanical Engineering Department, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
cMechanical Engineering Department, Faculty of Engineering, Assiut University, Assiut, Egypt
dDepartment of Mechanical Engineering, P. A. College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Mangaluru 574153, India
eDepartment of Mechanical Engineering, School of Technology, Glocal University, Delhi-Yamunotri Marg, SH-57, Mirzapur Pole, Saharanpur District, Uttar Pradesh–247121, India
fMechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
gMechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

*Corresponding author, e-mail: ratchagaraja@gmail.com

Abstract

In heat transfer applications, nanofluids are utilized to increase thermal conductivity and heat transfer coefficient. The difficulty of nanoparticle stabilization in the fluids is a significant problem in heat transfer applications. Heat exchanger materials may wear and erode as a result of the additional nanoparticle. When compared to mono nanofluids, this can be lowered by using hybrid nanofluids. In this work, hybrid nanofluids are used in a radiator under laminar flow at 75°C, and the effect of volume concentration on heat transfer enhancement is investigated. The thermophysical characteristics of hybrid nanofluids are investigated using SiC and Al\textsubscript{2}O\textsubscript{3} at 0.1v % and 0.2v %. The results revealed that a hybrid nanofluid with a higher volume concentration improves heat transfer. Finally, regression analysis for laminar flow is carried out and correlations for experimental Nusselt number and friction factor values were developed. The impact of particle size, flow rate, and temperature on the radiator’s heat transfer enhancement is investigated using hybrid nanofluid at 75°C. It is observed that the size of the nanoparticle has a substantial effect on heat transfer characteristics. It is concluded that using smaller-sized hybrid nanoparticles of Al\textsubscript{2}O\textsubscript{3}/SiC-S with less volume concentration enhances heat transfer and reduces radiator size compared to conventional coolants.

Keywords: Hybrid nanofluids, Heat transfer coefficient, Nusselt number, friction factor, Radiator.

1. Introduction

Coolant is the fluid that prevents a system from overheating by flowing through it to remove excess heat produced. It should have higher heat transfer characteristics, low viscosity cost. Besides these properties, it should not cause corrosion to the system while it is flowing. Conventional coolants cannot satisfy growing automotive cooling demand. Ethylene Glycol (E.G) and Propylene Glycol
(P.G) are used as coolants due to their antifreeze properties and higher boiling point. Corrosion and fouling are significant problems that damage the radiator system by using these coolants. The thermal conductivity and heat transfer performance is lower for these coolants. A new cooling fluid should be incorporated into automobiles to increase cooling performance at less cost to overcome these problems. Due to the increased thermophysical properties of the nanoparticles scattered in the base fluid, nanofluids improve heat transfer in the engine radiator. The size of the radiator can be lowered significantly when nanofluids are employed as a coolant in an automotive system, enhancing overall efficiency. The nanoparticles were used in combination with a base fluid such as water and E.G. Recent studies have shown different methods for preparing nanofluid and stability analysis for various experimental investigations to analyze the thermophysical and heat transfer properties.

Aluminum oxide (Al₂O₃) was utilized as a nanofluid in E.G. with wire coil inserts for heat transfer enhancement in vehicle radiators by Goudarzi et al. [1]. With the usage of coils, a 9 % increase in heat transfer was achieved, according to the findings. The parallel use of the coil inserts at concentrations of 0.08 %, 0.5 %, and 1 % improved the thermal efficiency by 5 % relative to coils’ inserts alone. Devireddy et al. [3] used water as a coolant for an automotive radiator. They calculated the efficiency of TiO₂ nanofluids based on E.G. By increasing the fluid circulation rate, the heat transfer efficiency can be enhanced. Nanofluids have been shown to enhance heat transfer rates by up to 37% when compared to the base fluid. Elsebay et al. [4] used nanofluids instead of water flow to resize the radiator. Thermal and flow efficiency of two nanofluids (Al₂O₃/water and CuO/water) flowing into a flat radiator tube are tested. On the contrary, the required pumping capacity is increased over the base fluid after reducing the radiator volume.

Nieh et al. [5] employed alumina (Al₂O₃) and titanium (TiO₂) Nano-Coolant (N.C.) to improve the heat dissipation efficiency of an air-cooled radiator. The heat dissipation of the nanofluid was found to be higher than that of the base fluid in the experiments. It can be seen that TiO2 nanofluid outperforms Al₂O₃ nanofluid. The overall improved ratio of heat dissipation efficiency, pressure decrease, and hydraulic strength are 25.6 %, 6.1 %, and 2.5 %, respectively compared to the base fluid. Thermal conductivity, viscosity, mass, and temperature of Al₂O₃ nanoparticles dispersed in water and E.G. and utilized in automobile radiators were investigated by Elias et al. [6]. The thermal conductivity, viscosity, and density of the nanofluid significantly decrease as the volume concentrations increase. Hussein et al. [7] investigated the heat transfer improvement of an automobile radiator using TiO₂ and SiO₂ nanoparticles in pure water. The empirical results showed that TiO₂ and SiO₂ improved heat transmission with a vehicle radiator. For TiO₂ and SiO₂ nanofluids, the greatest increase in Nu numbers was 11% and 22.5%, respectively. Peyghambarzadeh et al. [8] used the traditional -NTU technique to test the heat transfer efficiency of an automobile radiator. Copper oxide and iron oxide nanoparticles are dispersed with water at 0.15, 0.4, and 0.65 vol% concentrations with an appropriate pH. Both nanofluids had a greater heat transfer coefficient than water, according to the findings. The overall heat transfer coefficient improves as velocity, nanoparticle concentration, and nanofluid velocity increase. Vajjha et al. [9] statistically examined heat transfer using two distinct nanofluids, Al₂O₃ and CuO, in an E.G./water combination flowing through a radiator’s flat tube to determine the nanofluid’s superiority over the base fluid. With increasing nanofluid volumetric concentrations, the friction factor and convective heat transfer effects improve. With varying nanofluid and Re numbers, this presents quantitative implications of heat transfer coefficient and friction factor variations. Leong et al. [10] focused on the use of copper nanofluids in a vehicle cooling system with E.G. The overall heat transfer coefficient and heat transfer rate were enhanced when nanofluids were used as the base fluid instead of E.G. Around 3.8 % of the heat transfer improvement is realized with 2v % copper particles in the base fluid.

Jasim et al. [18] employed alumina nanofluid with 0.5 % and 1% volume concentrations in a double pipe heat exchanger and observed that heat transfer improved as nanofluid volume concentrations and volume flow rates increased. In a double tube heat exchanger, Zhen et al. [19] investigated six nanofluids including CuO, Al₂O₃, Fe₃O₄, ZnO, SiC, and SiO₂. Due to its comparably high heat transfer performance and low friction factor, they found that CuO-water nanofluid offers a substantial benefit. Qamar et al. [20] investigated the stability and rheological characteristics of ZnO
nanoparticles in deionized water and ethylene glycol, finding that the viscosity increased with particle loading and surfactants had little effect. Under laminar flow conditions, Arulprakasajothi et al. [21] investigated the Nusselt number and friction factor behaviour in a tube heat exchanger with staggered and non-staggered conical strips, finding that the staggered conical strip with a twist ratio of $Y = 3$ and 0.5 % volume concentration of nanofluid provided the best heat transfer. Topuz et al. [22] investigated the thermophysical characteristics of Al_2O_3, TiO_2, and ZnO nanofluids using deionized water and observed that their thermal conductivity is proportional to temperature. The viscosity is related to volumetric concentrations but inversely proportional to temperature at the same time.

It has been reported from the above studies that the nanofluids used in the radiator showed enhancement of heat transfer characteristics. It is also noted that the Nu number is increased for all the nanofluids. The friction factor and pressure drop properties of nanofluids utilized in the radiator are also investigated. Apart from the above, some of the experiments conducted in automotive radiators with nanofluids to improve the heat transfer characteristics are given in Table 1.

Table 1 Summary on nanofluids performance in automotive radiator

<table>
<thead>
<tr>
<th>Author</th>
<th>Nanoparticle / Base fluid</th>
<th>Weight (w)/Volume (φ) (%)</th>
<th>Coolant flow conditions</th>
<th>Results and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selvam et al. [2]</td>
<td>Graphene nanoplatelets (Gpn)/Water</td>
<td>0.1vol% to 0.5vol%</td>
<td>10 g/s to 100 g/s</td>
<td>Enhancement of convective heat transfer coefficient of 0.5 vol% than base fluid</td>
</tr>
<tr>
<td>Elsaid et al. [11]</td>
<td>Al_2O_3 and cobalt oxide (Co_2O_4)/ DI Water and EG</td>
<td>0.02vol%, 0.05vol%, 0.1vol% and 0.2 vol%</td>
<td>0.05–0.2 kg/s</td>
<td>Nu number enhanced to 31.8% and the friction factor 16%.</td>
</tr>
<tr>
<td>Cardenas et al. [12]</td>
<td>Graphene (Gpn) and silver (Ag)/ DI and EG</td>
<td>0.01vol%, 0.05vol% and 0.1 vol%</td>
<td>0.08 -0.11 kg/s</td>
<td>Increase of heat transfer rate by 4.4% for Ag.</td>
</tr>
<tr>
<td>Kocak et al. [13]</td>
<td>(i) Pure TiO_2, (ii) TiO_2 doped with 0.1% Ag, (iii) TiO_2 doped with 0.3% Ag, (iv) TiO_2 doped with 0.1% Cu/ DI Water and EG</td>
<td>0.3vol%, 0.5vol%, 1vol% and 2 vol%</td>
<td>17-25 l/min</td>
<td>Convection heat transfer coefficient increases for 0.3% Ag-doped TiO_2 nanofluids with concentrations of 1% and 2% is 26.15% and 27.72%</td>
</tr>
<tr>
<td>Singh et al. [14]</td>
<td>Copper oxide (CuO)/ DI Water</td>
<td>0.1vol%–0.5 vol%</td>
<td>Turbulent</td>
<td>Maximum heat transfer rate of 20% with 0.5% v/v</td>
</tr>
<tr>
<td>Tijani et al. [15]</td>
<td>Al_2O_3 and CuO/ DI Water and EG</td>
<td>0.05vol%, 0.15vol% and 0.3vol%</td>
<td>3 - 6 l/min</td>
<td>CuO nanofluid has a higher heat transfer coefficient than Al_2O_3 nanofluid.</td>
</tr>
<tr>
<td>Moghaieb et al. [16]</td>
<td>Al_2O_3 / DI Water and EG</td>
<td>0.5vol%, 1vol%, 1.5vol% and 2vol%</td>
<td>1–2 m/s</td>
<td>A higher heat transfer coefficient of 78.67% at 1%</td>
</tr>
<tr>
<td>Oliveira et al. [17]</td>
<td>Multi-walled carbon nanotubes (MWCNT)/DI Water</td>
<td>0.05wt% and 0.16 wt%</td>
<td>0.175 kg/s.</td>
<td>Decrease in the heat transfer rate of 5%</td>
</tr>
</tbody>
</table>
Due to the presence of various nanoparticles in the base fluid, it has been observed in the previous research that hybrid nanofluids provide higher heat transfer characteristics. The use of hybrid nanofluids would significantly increase the thermophysical characteristics and cooling rate compared to mono nanofluids. Due to the inclusion of various nanoparticles, particle aggregation is reduced in hybrid nanofluid. Compared to the enormous volume concentration of mono nanofluids, hybrid nanofluids have the same heat transfer properties. Many studies investigated the use of nanofluids to increase heat transfer coefficients and found that nanofluids had greatly improved heat transfer capacity due to their superior thermophysical characteristics. The SiC of large and small size nanoparticles is prepared with Al₂O₃ in this experimental study. Experiments with various volume concentrations in laminar flow are carried out to determine the performance of a radiator. In this study, hybrid nanofluids are prepared at various volume concentrations. The effect of volume concentration and nanoparticle size on heat transfer properties for laminar flow at 75°C in an automobile radiator is investigated.

2. Materials and Methods

The thermophysical characteristics of the base fluid should be improved by the nanoparticles dispersed in it. The thermophysical characteristics of nanoparticles vary with both volume concentration and temperature, as per the literature. The thermal conductivity of nanoparticles increases as the volume and temperature of the particles increase. Thermophysical properties increase as volume concentrations increase and decrease as temperature increases. As a result, the selection of base fluid is critical in the use of heat exchangers. The base fluid should not freeze, depending on the situation. De-ionized water (DIW), pure water, pure E.G., and EG/DI water are all utilized as coolants in various proportions. DI-Water and E.G are being used as base fluids in variable concentrations in this experiment. The base fluid in this study is a DI Water/E.G. mixture with a 70% DI Water volume concentration.

2.1 Preparation of Nanofluids
Silicon carbide (SiC) and aluminium oxide were used as the nanoparticles for this study (Al₂O₃). To decrease size, silicon carbide (SiC) with an average diameter of 90 nm is processed in a planetary ball mill. Because of the milling process, the size of SiC is decreased by 28%, resulting in a more amorphous output. The SiC particles had a weight % of 53.1 Si and 38.13 C after milling, with 10.87 weight % of Fe, as determined by EDS proportions.

The two-step approach for preparing nanofluid is used. The Al₂O₃/SiC-L and Al₂O₃/SiC-S are initially dispersed in DI Water and E.G. at volume concentrations of 0.1 v % and 02 v %, respectively. To ensure that the base fluid and nanoparticles are stable, sodium citrate is added as a stabilizer, and magnetic stirring is performed. Sonification is performed for 3 hours with continual stirring to minimize agglomeration in the fluid. Similarly, nanofluids with volume concentrations of 0.1 v % and 02 v % are generated for Al₂O₃/SiC-S and Al₂O₃/SiC-L, respectively. Both large and small nanoparticles are ultrasonicated with base fluid to obtain nanofluid without sedimentation in an ultrasonic bath as shown in Fig. 1. The prepared nanofluids are monitored for 12 days showing good stability, as shown in Fig. 2.

2.2 Morphology of Nanofluids

Hybrid nanofluids comprise two or more different particles in the base fluid regardless of particle size distributions or distinctive geometries. The morphology of the hybrid nanofluids of Al₂O₃ and SiC is analyzed using Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS). The TEM image of the hybrid nanofluid is shown in Fig. 3, proving the particles are spherical. Energy-dispersive X-ray spectroscopy (EDS) is a widely used technique for determining
the elemental compositions of extremely tiny material samples. The electron beam excites the atoms
on the surface, producing particular wavelengths of X-rays that indicate the elements atomic structure. A
concentrated beam of charged particles with high energy is directed into the sample under
investigation. An X-ray with the energy of the difference in the binding energies of the electron levels
is emitted when an electron from a higher binding energy electron level falls into the core hole. EDS
analysis generates a spectrum that contains peaks according to the sample’s elemental makeup.

![TEM image of hybrid nanofluids](image)

Fig. 3 TEM image of hybrid nanofluids

![Particle size distribution](image)

Fig. 4 Particle size distribution of Al₂O₃/SiC-L

Fig. 5 Particle size distribution of Al₂O₃/SiC-S

It is seen from Fig. 4 that Al₂O₃/SiC-L is spherical with large agglomerates, and the image
segmentation and particle size distribution ranges from 25 nm to 80 nm. Fig. 5 showed that
Al₂O₃/SiC-S with spherical shape contains more particles, and the distribution of particle size ranges
from 10nm to 25nm. The Energy Dispersive Spectroscopy (EDS) images of hybrid nanofluids of
Al₂O₃ with larger SiC are shown in Fig. 6, and Al₂O₃ with smaller SiC is shown in Fig. 7, providing
the presence of corresponding elements.

![EDS image](image)

Fig. 6 EDS image of the Al₂O₃-SiC-L
2.2 Stability of Nanofluids

The sedimentation of nanoparticles will influence the thermal conductivity of nanofluids in the base fluid. The zeta potential of the produced fluids is measured to determine nanofluid stability. The zeta potential of nanofluids during 16 days varies from 47 to 59 mV, as shown in Fig. 8. This demonstrates that hybrid nanofluids are highly stable.

![Stability analysis](image)

Fig. 8 Stability analysis

The presence of a zeta potential greater than 32mV, defined by the ASHRAE standard, indicates that the fluids are stable. The stability of the produced nanofluid is tested for 60 days (12 days intervals), indicating that no sedimentation has occurred. Compared to the larger particles in the base fluid, the nanofluid with smaller nanoparticles shows good stability. Even though the zeta potential falls with the number of days due to clusters created by particle agglomeration, the stability of the prepared nanofluids is more than 48mV, demonstrating that nanofluids can be used for heat transfer applications.

2.3 Experimental Setup and Procedure

Figure 9 shows a photographic view of the experimental setup. Vertical aluminium tubes with an induced draught fan constitute the radiator. The cross-flow design is used with the axial fan, which is fitted with a radiator that pulls air to cool the hot fluid moving through the system. The arrangement has two circuits: a hot fluid circuit and a cold air circuit. A heater with a thermostat, circulating pump, and flow meter control the fluid flow in the hot fluid system. An axial fan supplies cold air to the radiator in the cold air circuit.
Temperature sensors are installed on the radiators inlet and outlet, and the temperature is recorded using a data logger. The air velocity is measured with a digital anemometer. Two points control the feed temperature, and the PID power control unit is governed by the data acquisition software. The heater may also be manually regulated using a control variable ranging from 0 to 100%. With a safety group that restricts the pressure, automatic bleeding of the heating circuit will be supplied. Along with the radiator, an axial fan is installed to disperse the heat. Water cannot be compressed as it expands during heating. To compensate for this expansion, vessels with a gas space are provided. The water level above the expansion vessel corresponds to the entry pressure of the gas space with hot water. In the radiator, the heat transfer characteristics are investigated at various flow rates. The effect of particle size on the base fluid is investigated using SiC nanoparticles of different sizes (90nm and 24nm). Under laminar flow at 75°C, the effect of inlet fluid temperature on heat transfer characteristics is investigated using a hybrid nanofluid of SiC/Al₂O₃ with two concentrations of 0.1v% and 0.2v%. The dimensions of the radiator are given in Table 2.

Table 2 Measurements of the radiator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dimensions(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of radiator</td>
<td>34</td>
</tr>
<tr>
<td>Width of radiator</td>
<td>1.7</td>
</tr>
<tr>
<td>Height of radiator</td>
<td>31</td>
</tr>
<tr>
<td>Thickness of fin</td>
<td>0.01</td>
</tr>
<tr>
<td>Length of fin</td>
<td>1.1</td>
</tr>
<tr>
<td>Number of tubes</td>
<td>42</td>
</tr>
<tr>
<td>Length of tube</td>
<td>32</td>
</tr>
<tr>
<td>Thickness of tube</td>
<td>0.007</td>
</tr>
<tr>
<td>Hydraulic diameter of tube</td>
<td>0.373</td>
</tr>
</tbody>
</table>

The nanofluid volume concentration and the hot and cold circuit flow parameters in the present investigation are given in Table 3.

Table 3 Experimental testing conditions of nanofluids

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Variation in parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃/SiC –L (vol%)</td>
<td>0.1 & 0.2</td>
</tr>
<tr>
<td>Al₂O₃/SiC –S (vol%)</td>
<td>0.1 & 0.2</td>
</tr>
<tr>
<td>Mass flow rate of nanofluid (g/s)</td>
<td>13, 26, 39, 52 & 65</td>
</tr>
<tr>
<td>Experimental parameters</td>
<td>T_in, T_out, T_a, T_b, T_w</td>
</tr>
<tr>
<td>Nanofluid inlet temperature (°C)</td>
<td>75</td>
</tr>
</tbody>
</table>
2.4 Data Processing

The following equations are used to investigate thermophysical parameters including, viscosity, thermal conductivity and density, which are essential in determining particle size effect.

Graham’s Equation (1) shows that particle size has less influence on the viscosity of a fluid.

\[
\frac{\mu_{nf}}{\mu_{bf}} = 1 + 2.5\varphi + \left[\left(\frac{h_{ip}}{d_p} \right) \times \left(\frac{1}{2 + 2.5\varphi} \right) \times \left(\frac{h_{ip}}{d_p} \right) \right] \quad (1)
\]

The density of the nanofluids are calculated by Equation (2)

\[
\rho_{nf} = \varphi_s \rho_{s1} + \varphi_s \rho_{s2} + \rho_{nf} (1 - \varphi_s) \quad (2)
\]

Where, \(\varphi_s \) is the total volume concentration of hybrid nanofluid, \(\rho_s \) is the density of the first nanoparticle, \(\rho_{s2} \) is the density of the second nanoparticle

The viscosity of the nanofluid is calculated for low particle volume concentration from the Einstein model of Equation (3)

\[
\mu_{nf} = \frac{\mu_{nf}}{(1 - \varphi_{s1})^{2.5}(1 - \varphi_{s2})^{2.5}} \quad (3)
\]

The Maxwell model is used to calculate thermal conductivity in Equation (4).

\[
\frac{k_{nf}}{k_{bf}} = \frac{k_{s2} + (n-1)k_{bf} - (n-1)\varphi_2(k_{bf} - k_{s2})}{k_{s2} + (n-1)k_{bf} + \varphi_2(k_{bf} - k_{s2})} \quad \text{where } \alpha = \frac{k_p}{k_f} \quad (4)
\]

Equation (5) is used to calculate the heat transfer coefficient (5)

\[
h = \frac{mC_p(T_{in} - T_{out})}{A[T - T_w]} \quad (5)
\]

The peripheral area is given by the formula (6),

\[A = 2[lh + lw] \quad (6)\]

Equation (7) gives the Reynolds number,

\[Re = \frac{\rho.v.d}{\mu} \quad (7)\]

Equation (8) gives the Nusselt number (Nu)

\[Nu = \frac{h.d}{k} \quad (8)\]

Equation (9) is used to calculate the hydraulic diameter of tubes

\[d = \frac{4A'}{p} \quad (9)\]

Equation (10) is used to calculate the friction factor of laminar flow.

\[f = (\Delta p / (\rho v^2 / 2)) \times (d / l) \quad (10)\]

3. Results and Discussions

3.1 Analysis of Heat Transfer Characteristics

Experiments are conducted with \(Al_2O_3/SiC-L, Al_2O_3/SiC-S \) with 0.1 vol%, and \(Al_2O_3/SiC-L, Al_2O_3/SiC-S \) with 0.2 vol% under laminar flow conditions at 75°C in the present study. Heat transfer characteristics like heat transfer coefficient, Nu number, and friction factor with Re number are drawn for hybrid nanofluids. The findings are examined based on particle size, volume concentration, and flow rate.

3.1.1 Analysis of heat transfer coefficient for hybrid nanofluids under laminar flow

Figure 10 shows the heat transfer coefficient for hybrid nanofluids at 75°C as a function of Re number. \(Al_2O_3/SiC-S \) with a 0.2 vol% content showed a higher heat transfer coefficient at all Re number ranges. The maximum heat transfer coefficient is obtained for \(Al_2O_3/SiC-S \) at 0.2 vol% is 1317 w/m²k at Re number of 1800. Further, the heat transfer coefficient is 5.3% higher than
Al₂O₃/SiC-L of 0.1 vol% and 6.4% than base fluid. This is due to the reduction of particle size in the hybrid nanofluids. The enhancement in thermal conductivity is affected by the clustering and aggregation, reduced largely by milling and nanoparticles’ size. With the reduction in particulate size by milling, the hybrid nanofluid’s heat transfer coefficient increases by 9-11%.

Fig. 10 Variation of heat transfer coefficient with Reynolds number

It is observed that Al₂O₃/SiC-S has a higher heat transfer coefficient than Al₂O₃/SiC-L at a higher flow rate. This is due to the enlarged surface area of smaller particles and more particles present in the nanofluids. An increase in the heat transfer coefficient is observed as the particles’ distribution is uniform for smaller particles than larger particles at a higher flow rate. The interactions between the smaller SiC-S particles with the Al₂O₃ are higher than the larger SiC-S particles with the Al₂O₃, increasing chaotic movements and dispersions and enhancing the heat transfer coefficient. The average increase in the heat transfer coefficient of the nanofluid when the particle size is reduced is found to be between 15% and 42%.

3.1.2 Analysis of Nusselt number for hybrid nanofluids under laminar flow

Figure 11 shows the variation of Nusselt number with Re number for hybrid nanofluids at 75°C. It is seen from the graph that Nu number increases with flow rate and concentration. Concerning concentration, the Nu number for Al₂O₃/SiC-S at 0.2 vol% is 31 at Re number of 1800, and it is 2.5% higher than Al₂O₃/SiC-L of 0.1 vol% and 3.5% higher than base fluid. The maximum Nu number obtained for Al₂O₃/SiC-S at 0.2 vol% is due to smaller nanoparticles, making a large surface area, and low agglomerates than larger nanoparticles. Al₂O₃/SiC-S has a higher Nu number than Al₂O₃/SiC-L at a higher flow rate from large and smaller particles. This is because of smaller particles’ enlarged surface area and more number of particles than larger nanoparticles. An average enhancement of Nu number of 7-12% is observed for Al₂O₃/SiC-S due to increased thermal conductivity. A maximum Nu number enhancement of 2.8% is observed for Al₂O₃/SiC-S, which is 8% higher than Al₂O₃/SiC-L. The Nu number enhancement for smaller nanoparticles is because of low viscosity, large surface area, and low agglomerates than the larger nanoparticles.

Fig. 11 Variation of Nusselt number with Reynolds number
Following a similar trend, the Nusselt number of the nanofluid increases gradually as the Reynolds number and volume concentration increase. By increasing the concentration of nanoparticles in the nanofluid, convective heat transmission may be improved. This may be because adding nanoparticles to a fluid changes the flow structure.

3.1.3 Analysis of friction factor for hybrid nanofluids under laminar flow

The variation of friction factor with Re number at 75°C is shown in Fig. 12. The friction factor lowers as the flow rate increases and increases as concentration decreases. The friction factor for Al\(_2\)O\(_3\)/SiC-L of 0.2vol% is 2.6% higher than Al\(_2\)O\(_3\)/SiC-L of 0.1vol% and 3.2% higher than base fluid concerning volume concentration. The increase of friction factor is higher for hybrid nanofluids with increasing volume concentration. It is seen that Al\(_2\)O\(_3\)/SiC-L at 0.2vol% has the highest friction factor due to the presence of larger nanoparticles.

![Fig. 12 Variation of Friction factor with Reynolds number](image)

Al\(_2\)O\(_3\)/SiC-L has a higher friction factor for large and smaller particles than Al\(_2\)O\(_3\)/SiC-S at a higher flow rate. An average enhancement of 9-12% is observed for Al\(_2\)O\(_3\)/SiC-S due to increased viscosity. It is also observed that Al\(_2\)O\(_3\)/SiC-L at 0.2vol% shows a higher friction factor than Al\(_2\)O\(_3\)/SiC-S at 0.2vol% at all Re number. This is because of bigger nanoparticles and more agglomeration during the flow of nanofluids. A maximum friction factor enhancement of 2.9% is observed for Al\(_2\)O\(_3\)/SiC-L at 0.2vol%, which is 6% higher than Al\(_2\)O\(_3\)/SiC-S at 0.1vol%, proving smaller nanofluids have better flow than larger nanofluids. The increase in Re number influences the friction factor, and the average increase of friction factor is minor, which can be negligible.

3.1.4 Correlations for hybrid nanofluids under laminar flow

A correlation equation for the Nu number was developed for laminar flow using the experimental values and regression analysis. The correlation of the nanofluids flowing through the radiator with the Re number range of 700< Re < 2200, \(\phi = 1\%\), 11.93 < Pr < 18.46 is given in Equation (11).

\[
\text{NU}_{\text{Reg}} = 0.5637 \times \text{Re}^{0.7851} \times \text{Pr}^{0.4} \times (1 + \phi)^{0.2362}
\]

(11)
As shown in Fig. 13, the Nu number values obtained from the regression equations are compared to the experimental results. With a standard deviation of 6.3 % and an average deviation of 5.4 %, this implies that the predicted values match the actual values of laminar flow. To predict the friction factor under laminar flow circumstances, a regression equation is developed and provided by Equation (12).

$$f_{\text{Reg}} = 24.83 \, \text{Re}^{-0.6352} \, (1 + \phi)^{0.1969}$$

The friction factor experimental findings are compared to the regression equation values in Fig. 14. The regression friction factor and the experimental friction factor for laminar flow are linear, with a standard deviation of 5.9% and an average variance of 4.8 %.

4. Conclusion

- Al$_2$O$_3$/SiC-S of 0.2vol% is 2.1% shows a higher heat transfer coefficient than Al$_2$O$_3$/SiC-L of 0.1vol% and 2.8% higher than base fluid based on particle size and volume concentration. Small-sized nanoparticles in the Al$_2$O$_3$/SiC-S create a large surface area and uniform distribution of the nanofluid flowing through the radiator tubes.
- Nu number for Al$_2$O$_3$/SiC-S of 0.2vol% is 2.7% higher than Al$_2$O$_3$/SiC-L of 0.1vol% and 3.2% higher than base fluid. The chaotic movement is increased in the presence of more molecules than larger nanoparticles because of the increase in Nu number.
- The friction factor for Al$_2$O$_3$/SiC-S of 0.2vol% is 4.3% lower than SiC-L of 0.3vol% and 1.5% higher than base fluid. The friction factor decreases at a higher velocity and can be negligible compared to the base fluid.

Nanofluids with smaller sizes show higher heat transfer characteristics than larger sizes in laminar flow conditions. The heat transfer characteristics are higher for hybrid nanofluids because of more particles, two different particles, and a large surface area.
Acknowledgements

Acknowledgement: This study is supported by Taif University Researchers Supporting Project number (TURSP-2020/49), Taif University, Taif, Saudi Arabia. The authors would like to thank Taif University for its financial support.

Nomenclature

\(h_{ip} \) - Particle interspacing
\(H \) - heat transfer coefficient
\(T_{in} \) - inlet temperature of nanofluid
\(T_{out} \) - outlet temperature of nanofluid.

References

Submitted: 06.07.2021
Revised: 01.11.2021
Accepted: 12.11.2021.