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Artificial neural networks application in science and techonology begun during 20th 
century. This biophysical and biomimetic phenomena is based on extensive research 
which have led to understanding how neural as a living organism nerve system basic 
element processes signals by a simple algorithm. The input signals are massively par-
allel processed, and the output presents the superposition of all parallel processed 
signals. Artificial neural networks which are based on these principles are useful for 
solving various problems as pattern recognition, clustering, functional optimization.  
This research analyzed thermophysical parameters at samples based on Murata 
powders and consolidated by sintering process. Among different physical proper-
ties we applied out neural network approach on grain sizes distribution as a func-
tion of sintering temperature, T, (from 1190-1370 оC). In this paper, we continue 
to apply neural networks to prognose structural and thermophysical parameters. 
For consolidation sintering process is very important to prognose and design many 
parameters but especially thermal like temperature, to avoid long and even wrong 
experiments which are wasting the time and materials and energy as well. By this 
artificial neural networks method we indeed provide the most efficient procedure 
in projecting the mentioned parameters and provide successful ceramics samples 
production. This is very helpful in prediction and designing the micro-structure pa-
rameters important for advance microelectronic further miniaturization develop-
ment. This is a quite original novelty for real micro-structure projecting especially 
on the phenomena within the thin films coating around the grains what opens new 
prospective in advance fractal microelectronics. 
Key words: neural networks, sintering temperature, fractal microelectronics, 

micro-structure miniaturization, biomimetic

Introduction 

During last few decades many non-conventional methods are applied solving engi-
neering problems. They imply usage of fuzzy and genetic algorithms as well as neural net-
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works. Lately, combination of these methods named hybrid intelligent approach has a wide-
spread application. This approach is used solving various fields such as: medicine [1], geology 
[2, 3], energetics [4, 5]. Having this in mind we decided to investigate possible neural networks 
application on sintering process.

The main idea in this paper is to extend the neural network application on processes in 
sintering within different sintering temperatures intervals. The consolidation process of ceramic 
materials at different thermal conditions has a very important relation to sintering temperature. 
First, in this research, we introduce the review of some results based on neural networks applied 
for different physical parameters. Then we review the results in some our previous papers with 
the goal to introduce the method application for different cases. In that sense we practically in-
troduce the platform for artificial neural network (ANN) application as possible solution which 
extend the experimental results based on different process sintering temperatures as interpo-
lation and extrapolation approach to get some additional results designed by curvatures and 
diagrams with no more experiments. This is very useful from the experimental point of view 
because we support the measurements with additional results which practically correspond to 
much wider extended experimental intervals with exemptible neglected error.

Regarding previous introduction in the main subject, we make a brief cross-section of 
some our main previous results. 

The ANN are systems inspired by neural networks of living organisms. They con-
sist of artificial neurons-nodes that mimic basic function of biological neurons. They perform 
data mapping based on training process without a mathematical process model [6]. The only 
data necessary for mapping are input-desired output data pairs. Mapping with predefined er-
ror margin is achieved by adjusting network coefficients through the training process. Only 
necessary information during tranining process [7] is a network error that occurs at net-
work output caused by incorrect network coefficients values, wij, fig. 1, [8]. On this fig. 1  
neurons: i, j are presented by nodes while inputs are on arrows directed towards nodes and 
nodes outputs are on arrows directed forward. Changing coefficient values through training 
process leads to a decrease in the error and after training process is completed, the network 
mapping is satisfactory even for a new input data on network has not been trained. Training pro-
cess implies changing all network coefficients starting from network output through the whole 

network to the input. Since this process performs 
from network output to network input it is called 
error back propagation [9]. In this way contribu-
tion of all network elements generating output 
error is calculated. 

The developed technological processes and designing methods for the ceramic ma-
terials are on the way to create the full control on grains, pores and their bilayers between the 
constituents (grains and pores) of ceramics structures. It is very important to connect all of these 
intergranular phenomena including the microcapacitances by a neural network with the task to 
compare the results in the bulk samples measurements frame and microelectronics parameters 
at the micro-structure level.

The basic research was to develop the interface coating around the grains and to con-
trol the layers between two grains, as a media for electronic parameters integrations [10]. The 
experiments were based on nano BaTiO3 powders with Y additives. The dielectric parameter 
results at the submicron level are the part of characteristic values measured at the bulk samples 
surfaces. The main idea is to develop the new computing methods to network electronic pa-
rameters within layers between the grains and pores to get and compare the global values at the 

Figure 1. Nodes of a neural network
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samples surface. The procedure of propagating 
an error signal through the whole network is 
proposed as a tool for propagating any signal 
of interess through the network structure that 
mimics ceramics structure.

Material structure is assumed as a multi 
thin layers coating around the both sides grains 
interconnections. Any signal measured on the 
material surface could be propagated through-
out the structure instead of a neural network 
error. This idea was analysed in [11] where relative capacitance measured on a sample surface 
was propagated through the ceramics structure assuming that ceramic structure can be present-
ed by a neural network, fig. 2. 

 Also, in addition, this structure could be expressed by a graph method as well. In this 
case, the grains and pores, as basic elements of material structure, can be designed by graph 
nodes and their mutual interconnection-lines [12]. The other aspect of this method is a common 
to present the ANN certain types by a graph, too. These ANN are used to present ceramic struc-
tures. The properties prognosis could be done by using neural networks. We now present one 
characteristic neural network as more descriptive approach for better understanding of previous 
explanations. 

The concept of ANN and graph theory application is a part of our extended research 
in the field of electronic ceramic materials, sintering science, and micro-structure analysis and 
related phenomena especially based on fractal nature analysis and involved corrections [13-16].

These papers were the basis for further investigations on neural networks application 
in the sintering process analysis.

Experiment

The preparation of ceramic powder, con-
solidation and sintering, is a complex process to 
get of BaTiO3-ceramics samples is presented on 
fig. 3. [17]. In this paper, we disposed the global 
scientific-technological-research algorithm with 
associate laboratory processes. We used high pu-
rity commercial BaTiO3 Murata powder (99.9% 
purity, mean grain size <2 μm). For further re-
search related to nanostructural and thermophys-
ical properties, it was necessary to prepare the 
BaTiO3-ceramics samples. In our research we 
analysed the influence of sintering temperature 
and time on the final BaTiO3-ceramics charac-
teristics. The BaTiO3 with additive powders 
mixture was processed into a mill with balls and 
water. The organic binders were added and ho-
mogenization was about 48 hours, and the mass was transported by the membrane pump and 
dried, so we determined the powder granulation. The material density was tested every hour by 
a special vessel and after that was performed vibrating sieve. The powder particles were roughly 
shaped (diameters ranging 10-130 μm).

Figure 2. The principle scheme neural 
networks application on input parameters 
temperature and voltage and output 
parameter relative capacitance

Figurе 3. Scheme of the process of  
consolidation of BaTiO3-ceramics
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Along the influence of sintering temperatures, we analyzed the impact of different 
additives concentrations. In this research we used: CeO2, MnCO3, Bi2O3, Fe2O3. Sintering 
times where 2 hours, 3 hours at a temperature (1190-1370 °C) and at a pressing pressures  
(86-150 MPa). 

Within samples testing we characterized different thermophysical and structural prop-
erties, tab.1.

Because of comparison, we applied our methods at the pure and with additives BaTiO3. 

Table 1. Process parameters: pressure, p, sintering temperature Tsint,  
time, τsint; pure BaTiO3 and with additives 

Sample type P [MPa] Tsint [°C] tsint [hour]

I-16 BaTiO3-ceramics* 
with no additives

86 1190 2
105 1190 2
130 1190 2
150 1190 2
86 1290 2
105 1290 2
130 1290 2
150 1290 2
86 1370 2
105 1370 2
130 1370 2

Basic mixture BaTiO3-ceramics:  
composition: 0.1% CeO2 

+ 0.14% MnCO3 

1190 2
1190 2
1190 2
1190 2
1370 2
1370 2
1370 2
1370 2

Basic mixture BaTiO3 -ceramics:  
composition: 0.1% CeO2 

+ 0.14% MnCO3

1190 2
1240 2
1290 2
1370 2
1190 3
1240 3
1290 3
1370 3

                           * Only for pure BaTiO3-ceramics with no additives influence of sintering time was analysed. 

Apply of linear method section measuring for investigation of the influence of sinter-
ing temperature and time on grain size, l, is here presented. 
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Let a set: l1, l2,..., ln presents discrete set of grain sizes obtained by measuring sections 
method. Based on relative frequencies, fri, distribution function can be empirically defined:
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While variation intervals lmin, lmax were separated into s classes with no intersections: 
[Ck, C1), [C1, C2),..., [Cs–1, Cs). Analyzing obtained samples results it can be concluded that pos-
sible values of grain sizes interval is 0-22 µm. Classes of grain sizes are defined (class width  
1.5 µm) as well as corresponding distribution functions, absolute frequencies for defined sin-
tering temperatures and times 2 and 3 hours, respectively, tab. 2. Analyzing cumulative fre-
quencies obtained based on appropriate absolute frequencies and appropriate functions F (s)

n (l), 
empiric function can be established:
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Table 2. Grains size as a function of a sintering temperature and sintering time
From [µm] 2 3 2 3 2 3 2 3
0.5 1.5 149 78 58 7 45 2 2 72
1.5 3 209 179 186 104 132 36 41 51
3 4.5 60 167 104 160 101 67 69 75

4.5 6 24 52 48 94 74 82 83 89
6 7.5 7 23 34 47 37 86 59 59

7.5 9 1 7 9 17 25 52 38 48
9.0 10.5 – 3 3 13 9 36 43 40
10.5 12 – 1 6 5 12 26 30 31
12 135 – – 1 1 6 12 25 18

13.5 15 – – 0 2 2 18 17 18
15 16.5 – – 0 3 10 12 7

16.5 18 – – 1 – 3 11 10 5
18 19.5 – – – – 1 4 7 4

19.5 21 – – – – – 4 7 3
21 22.5 – – – – – – 3 3

This relation where a, b are parameters and l* characteristic value of grain size with 
parameters values a, b, l* defined in tab. 3 presents relation of grain size according to temperature 
and sintering time. On fig. 4 is a presentation of results obtained from tab. 2 applying eq. (1).

It can be noticed that on lower sintering temperatures typical grain sizes are within 
narrow interval so the grain size value of 10 µm presents critical value because there is no grain 
size value greater then it (flattened part of the curve). On the sintering temperature of 1290 °C 
the result is quite different since the range of values is much wider (smaller slope of the curve). 
On the sintering temperature of 1370 °C this characteristic is more expressed since flattening 
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appears for values greater then 25 µm so this curve slope is significantly lower then all other 
curves. Similar relation is presented on fig. 5 where it could be noticed that longer sintering 
time enables wider interval of possible values of grain sizes on lower temperatures as well. This 
phenomena can be explained by influence of sintering time and material density increase as a 
consequence of sintering temperature increase.

Figure 4. Distribution function for different 
sintering temperatures, τsint = 2 hours

Figure 5. Distribution function for different 
sintering temperatures, τsint = 3 hours

By different micro-structural and qualitative metallography methods we have got the 
cumulative function parameters values, tab. 3. 

Table 3. Cumulative function parameters values
T [°C] t [hour] a  b [µm–1] l* [µm]

1190 2
3

100.2
101.7

0.72
0.46

0.1
0.6

1240 2
3

100.2
102.5

0.40
0.31

0.1
0.6

1290 2
3

100.5
103.7

0.28
0.15

0.1
0.6

1370 2
3

101.2
106.1

0.16
0.15

1.2
0.6

It is evident that number of grains per area unit decreases namely, grains size increases 
as sintering temperature increases from 1190 °C, 1240 °C, 1290 °C up to 1370 °C. The grains 
growth is noticed at the sintering temperature of 1290 °C. 

The effects of sintering temperature increase have the influence on sintering process 
and by that on ceramic material micro-structural constituents. In the case of same sintering 
time, as well as material density (pressing pressure) sintering temperature increase positively 
effects on BaTiO3 ceramics consolidation.

One can notice that extremely characteristic breaking character of sintering tempera-
ture 1240 °C relative to other sintering temperatures. The other methods (SEM and optical mi-
croscopy) confirm the influence of sintering temperature of 1240 °C as a key factor in sintering 
process namely BaTiO3-ceramic material total consolidation process. 

Results and discussion – advantages of the ANN based approach

In the previous section the significance of sintering temperature to ceramics consol-
idation has been observed. Conclusions were drawn based on the experiments performed on 
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different certain sintering temperatures (1190 °C, 1240 °C, 1290 °C, and 1370 °C) using distri-
bution function. It would be of interest to define a distribution function for an arbitrary sintering 
temperature. This can be performed by extrapolating and interpolating experimental measure-
ments [18,19]. One of possible procedure is the use of neural networks [20]. From now on, we 
present the application of a back-propagation neural network that solves this problem. 

Back propagation neural network can potentially perform arbitrarily input-output data 
mapping. Desired input-output mapping is known in advance. This neural network possesses 
numerous adjustable parameters – weight coefficients (weights) which have to be set on ap-
propriate values to provide accurate mapping. Since weights starting values are set at random 
input-output mapping is incorrect. Adjusting the weight coefficients on their appropriate values 
to provide an accurate mapping is called the training process. This implies the introduction of 
input data to neural network which generates neural network output. Output error occurs as a 
result of incorrect network weight values. All weights are changed backward through the net-
work, starting with output layer neurons, continuing with hidden layer neurons to the input lay-
er neurons. This change provides network error reduction. This procedure is repeated numerous 
times for all input-output data. Network is trained when input-output data set is mapped under 
predefined error. As a result of the training process, the neural network is able to map the new 
input data with satisfactory accuracy.

In general, main idea in this paper is to develop the approach which consists in com-
bining neural networks and interpolation method, to get the parameters defined in tab. 3. a, b, l* 
from distribution function data. After getting these parameters and completing the distribution 
function, we can easily produce another, fourth curve which practically confirms this original 
combined methods application as a successful with very low error. This way we opened new 
practical frontiers for designing and predicting experimental tasks and desired results. All this 
physical-mathematical experimental-theoretical combined method makes the procedure much 
more efficient for scientists and their experiments in the science of sintering. 

Neural network extrapolation

Network is trained to present distribution function eq. (1), for an arbitrary sintering 
temperature based on the set of four experimental results, for sintering time of 2 hours, fig 4. 
The curve parameters are shown on tab. 3. Input signals are 146 points on each curve repre-
senting grain size and appropriate distribution function values: l, F, (l). These 2-D vectors are 
presented to neural network as an input. Neural network had one hidden layer with 10 neurons 
and 3-D output layer, fig. 6. 

Desired outputs of the network are con-
stants during the training process for all the 
input data of a curve, the desired outputs are 
unchanging. For all 146 2-D input vectors of 
a curve for 1190 °C, tab. 3, first row, desired 
output vector should be x = (100.2; 0.72; 0.1) 
while for other input temperatures: 1240 °C, 
1290 °C, and 1370 °C output vectors are from 
tab. 3 defined, respectively.

 For the sake of testing neural network 
capability to predict curve parameters training 
will be performed on three experimental curves 
while fourth will be a test input. Network was Figure 6. Neural network structure
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trained on data presenting distribution function for 1240 °C, 1290 °C, and 1370 °C while curve 
for 1190 °C was used for testing. After training process is finished testing was performed by 
choosing a point from a test curve (for a 1190 °C it was l, F(l) = 5; 97.3). Distribution function 
parameters a, b, l* were obtained a with mean squared error: MSE = 1.55 ⋅ 10–1. Further on, net-
work was trained on data presenting 1190 °C, 1240 °C, and 1290 °C while a point from a curve 
for 1370 °C was used for testing (l, F(l) = 8; 67.1). Mean squared error calculating parameters 
a, b, l* of a curve for 1370 °C was in this case: MSE = 7.02 ⋅ 10–1.

Neural network interpolation

In this case, network was trained on curves representing sintering temperatures:  
1190 °C, 1240 °C, and 1370 °C while test curve is 1290 °C. After training process is finished 
testing was performed by choosing a point from a test curve (for a 1290 °C it was l, F(l) = 5;  
75.01). For that point parameters a, b, l * were calculated with mean squared error  
MSE = 3.3 ⋅ 10–2.

Further on network was trained on data presenting 1190 °C, 1290 °C, and 1370 °C 
while curve for 1240 °C was used for testing. In this case parameters a, b, l*

 were calculated for 
l, F(l) = 3; 68.79 with mean squared error MSE = 4.7 ⋅ 10–2.

In comparison with a combination of neural network and interpolation, where the 
errors are below 10–2, by extrapolation we have errors on the level 10–1. This is also a still ac-
ceptable errors frame that we can successfully apply neural networks as we already done by 
interpolation.

Outlook 

In future research, we plan to develop application neural networks for other sintering 
consolidation parameters, not only for sintering temperature, but also for sintering time, and 
pressure. We will consider the creation of some software application, which can contribute on 
direction of these methods. 

Conclusion

In this paper we applied the neural networks method with interpolation and extrapola-
tion methods within sintering temperature interval 1190-1370 °C. In this case we used 2 hours 
sintering time at the main sintering zone. We got results on the way for experimental-theoretical 
combined neural networks and interpolation-extrapolation methods application, which confirm 
successful idea. It has been established that greater accuracy is achieved applying neural net-
works as interpolation than extrapolationol. Namely, extrapolation of distribution function is 
achieved with MSE order of magnitude – 1 while interpolation shows that MSE is order of 
magnitude – 2. Such quantitative difference between results of extrapolation and interpolation 
was expected since extrapolation is quantitively a subject of greater uncertainty. Both results 
achieve acceptable errors and present basis for further research. In sintering science, the exist-
ing practice means that we must always do many experiments, which sometimes means a waste 
of time and does not provide high level of experimental efficiency. Based on the results in this 
paper, we have opened new frontiers in the prognosis of experimental parameters and desired 
results from the experiment, which is more efficient and faster way on how to plan and design 
the results. Also this is very helpful in the sense of getting the results and curves in experimental 
temperature space-interval between the previous known results, what could be helpful in exper-
imental development, to do or to avoid some experiments in between of existing interval points 
what is very important in experimental programming. The most advanced trend in sintering 
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process development is decreasing the sintering temperature in direction of energy and produc-
tion time and efficiency. A novelty of our ANN method application in the sintering process is 
that we can shortcut the experimental and producing procedure due to the projected temperature 
that we can apply with very neglectable errors. This is a truly advanced and original innovation 
of the sintering process application. 
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