
Zhou, Z

 COMPUTATIONAL FLUID DYNAMICS ITERATION

DRIVEN BY DATA

by

Zhijun ZHOU

*

, Qi ZHANG, Xichuan CAI,

Kun LI, and Jingwei ZHAO

State Key Laboratory of Clean Energy Utilization, College of Energy Engineering,

Zhejiang University, Hangzhou, Zhejiang, China

Original scientific paper
https://doi.org/10.2298/TSCI210313227Z

Data-driven approaches have achieved remarkable success in different applica-
tions, however, their use in solving PDE has only recently emerged. Herein, we
present the potential fluid method, which uses existing data to nest physical
meanings into mathematical iterative processes. Potential fluid method is suita-
ble for PDE, such as CFD problems, including Burgers’ equation. Potential fluid
method can iteratively determine the steady-state space distribution of PDE. For
mathematical reasons, we compare the potential fluid method with the finite dif-
ference method and give a detailed explanation.
Key words: data driven, artificial neural network, PDE, CFD, iteration

Introduction

In recent years, with the advancement of computer technology, we have witnessed
the emergence of an era driven by data. In this era, probability theory and mathematical sta-
tistics have been the focus of technological developments such as machine learning [1]. At the
same time, researchers face a huge challenge. They want to uncover the black box and com-
bine these different physical phenomena with data. This will form a framework that can be
applied to solve practical problems. Before the advent of this era, in order to solve these prac-
tical problems, researchers constructed corresponding PDE using some specific laws of phys-
ics. Then, they approximated PDE using finite difference methods (FDM) to solve equations
iteratively. It is an innovative idea to figure out whether there is a hidden model between these
data and physical phenomena

Nevertheless, this paper proposes a model that is more in line with CFD:

 1, , 1, , 1, , PFM i j i j i j i jU U U U− + +→ → (1)

where 1, , 1,, , i j i j i jU U U− + represent the velocity of three adjacent points at t = j, , 1i jU + – the
velocity of a point at t = j + 1, and PFM – of the potential fluid method. The details of the cal-
culation process will be described in detail later.

In addition, many deep learning concepts can be combined with classical methods in
mathematical physics to help us to solve problems with complex data and inverse problems in
complex dynamic systems. This combination of non-linear dynamics and machine learning

––––––––––––––
* Corresponding author, e-mail: zhouzj@zju.edu.cn

Zhou, Z

offers the potential to conduct predictive modeling [2, 3]. Differential equations are the cor-
nerstone of various applied science and engineering fields. However, their application in sta-
tistics and machine learning is rarely discussed. Perhaps the most important related work in
this area is the potential model. These models use differential equations to generalize potential
variable models [4-6]. Different from the potential model mentioned in [5], the current work
circumvents the need for analytical or numerical solutions to differential equations by placing
the neural network at velocity, U, rather than on the governing equation, and the results are
still consistent.

With respect to designing closed models for turbulence, Beck et al. [7] used a deep
neural network to design a turbulence closure model for large-eddy simulations, and Ling
et al. [8] used deep neural networks to model the Reynolds averaged turbulence. With respect
to optimal designs, Viquerat et al. [9] used deep reinforcement learning for direct shape opti-
mization, Yan et al. [10] optimized aerodynamic shapes using a new optimizer based on deep
learning, and Cai et al. [11] estimated the motion particle velocity based on deep learning.

However, in the study of using ANN to solve PDE, there is still a lack of iterative
applications. In particular, the new iterative ideas presented in this paper fill this gap.

In this paper, we develop a new neural network framework to develop the interface
between these data and the physical model, which allows learning from data and equations in
a specific way. In addition, we also assess the correctness of the method through an example.
Therefore, our contributions to this work are:
– We design a new data-driven, iterative method of CFD.
– This method achieves some results in 1-D problems.
– This method can give a reasonable discrete distribution of steady-state velocity field with

rough mesh.

Problem set-up and solution methodology

Problem set-up

In the traditional CFD calculation process, when solving a certain problem, we use
the FDM to perform finite differences on the equations and conduct iterative calculations
based on the initial conditions [12]. The time advancement and space advancement process of
the iterative solution are shown in fig. 1 (taking the 1-D solution as an example).

Taking the 1-D as an example, the i on the horizontal axis in fig. 1 represents the
node after meshing on the 1-D problem space, and the 1st, 2nd, 3rd, ..., ith, ..., and nth nodes are
represented from left to right. The j on the vertical axis in the figure represents the time step in
which the 1-D problem advances, and from bottom to top are the 1st, 2nd, 3rd, ..., jth, ..., and tth
iteration time steps. Based on relationship of the four blue points in the figure, the physical in-
formation in the three points where i = 1, 2, and 3 at j = 0 is input into the difference equation
obtained by the FDM method, and the physical information of this point with j = 1, i = 2 is
obtained. As shown by the four orange points and the four red points in the figure, the physi-
cal information transfers in the same way. The space propels along the horizontal axis to ob-
tain the physical information, and time advances along the vertical axis until the residual
reaches a certain number, which is considered to be convergent, and the calculated physical
information meets the requirements.

Now we develop a new idea. Based on the solution process of the FDM method, this
paper built a neural network, and solved the PDE. The algorithm is shown in fig. 2.

Zhou, Z

Figure 1. Schematic diagram of a CFD
iterative process

Figure 2. Diagram of the differences in the PFM
and FDM when solving fluid mechanics problems

As shown in fig. 2, for CFD, Process 1 is our solution route, which means that the solu-
tion route starts from the problem and reaches the result (velocity field). Process 2 is a tradi-
tional CFD method that utilizes boundary conditions, solves equations based on governing
equations, and uses the FDM to select equations suitable for CFD and an iterative solution. In
this paper, a new algorithm is developed. The mentioned iterative process is used to conduct
Process 3. According to a large amount of data generated by the iterative process, the hidden
fluid model existing in the data is mined, and the interface framework between the data and
the physical model is constructed. This paper builds this framework based on a neural net-
work and constructs the PFM. When encountering fluid mechanics problems, according to the
boundary conditions, we perform the work of Process 4 rather than Process 2. We input the
data into the PFM, and then we get the corresponding output. After the iterations, the velocity
field will be obtained. This paper will focus on the establishment and operation of the PFM
and will compare the results between the FDM and PFM.

Solution methodology

In the iterative process of the FDM, the velocity value of the corresponding point of
the input is changed. As shown in fig. 1, when the velocity value of each point at j = 1 is re-
quired, the velocity values of each point at j = 0 are used to solve the difference equations. As
shown by the blue dots in fig. 1, U2.1 is obtained by inputting 1,0 2,0 3,0, , U U U into the equa-
tion, namely:

 2,1 1,0 2,0 3,0 (, ,)U f U U U= (2)

In the conventional method, , 1 1, , 1,(, ,)i j i j i j i jU f U U U+ − += is obtained by ().iy f x=
The orange and red dots in the figure also follow the same iterative logic. Then, in the calcula-
tion process, there will be many such correspondences. We will use this method to build a
physical framework using neural network methods so that we can form a data-to-physical
model interface, which is called the PFM. Then, in the iterative process, we can use the PFM
instead of ()iy f x= to iteratively solve it. The neural network is shown in fig. 3.

We must normalize the input data before performing the operation. For a single neu-
ron, we assume that the input is 1 2 ;, , , , ,i nx x x x  the corresponding neuron connection
weights are 1 2 ;, , , , ,i n     and the threshold of the neuron is . The output value is:

Zhou, Z

Figure 3. Physical information delivery framework

1

n

i i
i

y f x 
=

 
= −  

 
 (3)

In the process of setting up the PFM interface, the input data we use is the data of
each time step obtained by the FDM, which is relatively easy to obtain. The output data are
the solution of the corresponding difference equation, which is the specific point of the next
time step’s data.

Test cases of numerical results.

This section takes two 1-D problems as an example to introduce the practical appli-
cation of this method.

Burgers’ equation

Burgers’ equation appears in various fields of engineering, including fluid mechanics,
non-linear acoustics, gas dynamics, and traffic flow. It is a fundamental PDE and can be derived
from the Navier-Stokes equations for the velocity field by dropping the pressure gradient term.
Burgers’ equation leads to the formation of impacts, which makes it difficult to solve using
classical numerical methods. This paper will start with a simple Burgers’ equation:

2

2
U U U

u
t x x


  

+ =
  

 (4)

The initial conditions are: ,0 0.5 , [1,1]xU x x= −  − .
The boundary conditions are:

 1,

1,

0.5

0.5
t

t

U

U
− =


= −

One of the traditional basic CFD method is used to solve this equation, and the 1-D
Burgers’ equation is solved by using the Lax-Wendroff method:

2

2
U f U

t x x


  
+ =

  
 (5)

where f = U2/2. The solution is written as a conservation form. The difference equation ob-
tained according to the space propulsion and time advancement method of fig. 1 is:

Zhou, Z

 1, , 1, 1, 1,
, 1 , 2

(2) 1 d
2()

i j i j i j i j i j
i j i j

U U U F F
U U t

xx

 + − + −

+

− + − 
= + − 

 
 (6)

In the formula:
 2

1, 1,i j i jF U+ += (7)

 2
1, 1,i j i jF U− −= (8)

For readability, we swap the horizontal and
vertical co-ordinates. Figure 4 is an FDM itera-
tive process cloud diagram where the ordinate
represents the position, the abscissa represents
the advancement of time, and the depth of the
color represents the velocity.

Subsequently, this paper finds an iterative
solution based on the FDM values, records the
three-point input and one-point output values of
each space advancement and time advancement,
and establishes a training database of the neural network. We randomly selected the corre-
sponding value (3 to 1) to form the training data set:
 1, , 1, , 1, , PFM i j i j i j i jU U U U− + +→ → (9)

As described in fig. 3, we take the adjacent three-point velocity at time t as an input
and the velocity at the same position t + Δt as the output for neural network training. The
amount entered is normalized and the sigmoid is used as the activation function.

The neural network consists of l input layer neurons, m hidden layer neurons, and n
output layer neurons, which is written as ANN (l, m, n), and the weights between neurons are
Wlm and Wmn. During the training process in which the predicted output value is compared to
the known output value, the initial estimated weight value is stepwise corrected and any errors
are propagated back to determine the appropriate weight adjustments that are needed to mini-
mize the error. Throughout the ANN simulation process, adaptive learning rates are used to
increase the training speed and solve local minima problems.

For each iteration, if the performance approaches the goal, the learning speed in-
creases as the learning increment increases. If performance is improved, the learning rate is
adjusted using a factor learning reduction. In practical applications, the simple trial and error
method is used to find the number of neurons in the hidden layer, and the Levenberg-Mar-
quardt (L-M) technique [13], which is more powerful than the traditional gradient descent
technique, is used to train the ANN. In this paper, the L-M training algorithm is used to adjust
the weights. The logarithmic sigmoid transfer function is used as the activation function of the
hidden layer and the output layer. The number of hidden layer neurons is found by simple trial
and error. The deviation criterion during training is usually expressed using the mean square
error (MSE) between the actual output and the predicted output:

 2
,

1

1 ()
2

q

i i t
i

MSE y y
q =

= − (10)

Figure 4. Process cloud diagram of the

iterative difference equation
(for color image see journal web site)

Zhou, Z

where q is the number of samples used to train the ANN, and yi and yi,t – the ith neural net-
work predictor and actual value, respectively.

Second, the decision parameter, R2, is also applied to the statistical data, and its for-
mula is:

2 2
observed observed predictedobserved

2 1 1

2
observed observed

1

[(, 1) (, 1)] [(, 1) (, 1)]

[(, 1) (, 1)]

n n

i i
n

i

U i j U i j U i j U i j

R

U i j U i j

= =

=

+ − + − + − +

=

+ − +

 



(11)

where the overbar means average.
We use the data generated by the 100 iterations of the FDM as the training dataset.

In the training dataset containing 9900 sets of data, 10%, 30%, 50%, and other different pro-
portions of data are selected for training. For each training group, 70% of the data were used
for training, 15% of the data were used for validation and 15% of the data were used for test-
ing. The calculated MSE is the error during the test. Furthermore, we change the number of
hidden layer neurons. Here, p is the database containing the data ratio, and m is the number of
hidden layer neurons, tab. 1.

Table 1. The square root of MSE of different ANN

We train at p = 90% and m = 20. The training results are shown in fig. 5.

Figure 5. Training results; (a) iterative process diagram of MSE and
(b) iterative process diagram of R (for color image see journal web site)

m
p

5 10 15 20

10% 1.98·10–3 9.24·10–4 2.35·10–4 4.79·10–4

30% 7.69·10–5 5.48·10–5 1.43·10–5 3.24·10–4

50% 4.43·10–5 3.50·10–5 1.18·10–5 7.50·10–5

70% 3.40·10–5 3.05·10–5 3.66·10–5 1.30·10–5

90% 4.31·10–5 2.68·10–5 1.50·10–5 8.62·10–6

Zhou, Z

Rebuild

Subsequently, we replaced the governing
equations in the PFM with the ANN for the iter-
ative calculations. Figure 6 is the PFM iterative
process cloud diagram, where the ordinate rep-
resents the position, the abscissa represents the
propulsion time, and the depth of the color rep-
resents the velocity.

As shown in the cloud diagram, the itera-
tive process cloud diagram of the FDM is basi-
cally consistent with the iterative process cloud diagram of the PFM. We extracted four mo-
ments from it. The four-line diagrams after extraction are shown in fig. 7. At the times of
t = 0.25, 0.5, 0.75, and 1 seconds, the velocity field distributions of Burgers' equation calcu-
lated by the two methods are consistent. In addition, the calculated values of the two methods
are consistent, indicating that the PFM can achieve the same computational efficiency as the
FDM in 1-D problems. The steady-state calculated results are unified and the aforementioned
data-driven conjectures are verified, which achieves the computational purpose of this paper.

Figure 7. Speed distribution line graph at different time steps

Subsequently, we performed the calculation of the relative 1 error. The Nf is de-
fined as the number of collected points. At the same position, we define the U calculated by
the FDM as Ulax and define the U calculated by the PFM as UANN:

Figure 6. Process cloud diagram of the
iterative PFM

Zhou, Z

 ANN
1

1

1 fN
lax
i i

f i

U U
N =

= − (12)

In this way, we can compare the velocity values of the two clouds at the same loca-
tion and make the tab. 2. We use the following formula to make the error have no specific
physical meaning. Here, tU is the average velocity at the time of t.

 ' 1
1 lax

tU
= (13)

Table 2. Relative 1 error between Ulax and UANN

Different condition

Only the boundary conditions are changed and the other conditions remain un-
changed.

The boundary conditions are:

 1,

1,

0.4

0.4
t

t

U

U
− =


= −

 Originally: 1,

1,

0.5
0.5

t

t

U

U
− =


= −

Figure 8. Speed distribution line graph under different condition

t '
1

0.25 8.91·10–3

0.5 8.68·10–5

0.75 5.89·10–5

1 5.39·10–5

Zhou, Z

The PFM still provides the reliable steady-state distribution shown in fig. 8. This
distribution is consistent with the steady-state calculation results of FDM under the same scale
grid. Relative '

1 error, tab. 3, between Ulax and UANN:

'
1
'
1

–2

0 (0)

1.22 (1·10)

t

E t

= =

= =

Table 3. Relative 1
'

 error

Different ∆x

All the other conditions are the same, just
increase Δx by a factor. The red solid line in
fig. 9 is the steady-state numerical solution
under the fine grid, we use this as a reference.
We find that the PFM can still give a reliable
steady-state distribution under rough grids, as
shown by the blue line. But under rough mesh,
FDM cannot give a reliable steady-state distri-
bution.

Conclusions

In summary, this paper introduces a new
method for solving the velocity distribution. In
1-D, it uses the FDM to construct a data-
driven PFM framework to solve the velocity
distribution iteratively.

In Burgers' equation, the performance of the two models on the boundary conditions
and different ∆x is compared. The performance of PFM is reasonable, especially under larger
∆x. The solution process and the solution result are in line with the actual situation. The re-
established velocity distribution conforms to the laws of physics and successfully realizes the
expectations of this paper.

The expected results show that the PFM can be used to calculate the velocity distri-
bution under different boundary conditions or ∆x. The PFM can well uncover the black box
process in CFD and complete the core processing of the new iterative calculation method pro-
posed in this paper. (After publication, the relevant code will be uploaded to
https://github.com/ zhangqi1996456).

Acknowledgment

This work was supported by the Ningxia Science and Technology Department (No.
2018BCE01004) and the National Nature Science Foundation of China (No. 51976186).

t PFM FDM PFM/FDM

1 1.04·10–2 3.56·10–1 2.9·10–1

Figure 9. Speed distribution line graph with
different ∆x

https://github.com/zhangqi1996456

Zhou, Z

References

[1] Krizhevsky, A., et al., ImageNet Classification with Deep Convolutional Neural Networks, Proceedings,
Advances in Neural Information Processing Systems 25 (NIPS 2012), pp. 1097-1105,
http://papers.nips.cc/paper/ 4824-imagenet-classification-w%5Cnpapers3://publication/uuid/1ECF396A-
CEDA-45CD-9A9F-03344449DA2A

[2] Raissi, M., et al.,Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial
Differential Equations, Machine Learning, (2017), On-line first, arXiv:1711.105611v1

[3] Raissi, M., et al., Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial
Differential Equations, Machine Learning (2017), On-line first, arXiv:1711.10566v1

[4] Lawrence, N., Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent
Variable Models, Journal of Machine Learning Research, 6 (2005), 11, pp. 1783-1816

[5] Bishop, C. M., Tipping, M. E., Latent Variable Models and Data Visualisation, in: Stat. Neural Net-
works: Advance at the Interfoce, (Bishop, M., Michael, E.), 2000, pp. 147-164

[6] Depeweg, S., et al., Uncertainty Decomposition in Bayesian Neural Networks with Latent Variables,
Machine Learning, On-line first, arXiv:1706.08495v2, 2017

[7] Beck, A. D., et al., Deep Neural Networks for Data-Driven LES Closure Models, Journal of Computa-
tional Physics, 398 (2019), Dec., 108910

[8] Ling, J., et al., Reynolds Averaged Turbulence Modelling Using Deep Neural Networks with Embedded
Invariance, J. Fluid Mech., 807 (2016), Nov., pp. 155-166

[9] Viquerat, J., et al., Direct Shape Optimization Through Deep Reinforcement Learning, Journal of Com-
putational Physics, 428 (2021), Mar., 110080

[10] Yan, X., et al., Aerodynamic Shape Optimization Using a Novel Optimizer Based on Machine Learning
Techniques, Aerosp. Sci. Technol., 86 (2019), Mar., pp. 826-835

[11] Cai, S., et al., Dense Motion Estimation of Particle Images Via a Convolutional Neural Network, Exp.
Fluids., 60 (2019), 4, pp. 1-16

[12] Abadie, L. M., Chamorro, J. M., Finite Difference Methods, in: Lect. Notes Energy, Springer, London,
UK, 2013

[13] Watson, G. A., Numerical Analytics, Proceedings, Biennial Conference, Dundee, Scotland, 1977,
Springer, New York, USA, 1978

Paper submitted: March 13, 2021 © 2022 Society of Thermal Engineers of Serbia.
Paper revised: May 23, 2021 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.
Paper accepted: May 24, 2021 This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.

http://www.vin.bg.ac.rs/index.php/en/

