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The defrosting performance of automotive air conditioners plays an important role 
in driving safety. This paper uses CFD to simulate the internal flow field of the au-
tomobile numerically. Simulation results show that the flow distribution is unrea-
sonable. The horizontal grilles are added at the outlets to improve the defrosting 
performance of the automobile. Air-flow jet angle and the length of the air condi-
tioning outlets (L1, L2) are selected as design variables based on the radial basis 
neural network to find the optimal combination scheme. The area of the defrosting 
dead corner has been reduced from 20-5% after optimization, and the frost layer of 
the front windshield has been completely melted in 25 minutes. The experiment test 
is conducted to verify the improvement of the defrosting performance of automotive 
air conditioners. The design methodology can be applied to the development of the 
air conditioner.
Key words: defrosting performance, automotive air conditioning, optimization, 

radial basis neural network

Introduction 

Frosting and fogging of automobile windshields is a practical problem frequently en-
countered in the course of driving [1]. The defrosting performance of the front windshield 
affects the safety of drivers and passengers. Therefore, effectively improving the defrosting 
performance of automobile air conditioning systems has become a serious problem in the auto 
industry [2-4]. With the development of computer techniques, the CFD technique has been 
widely used in the optimization research of defrosting performance [5, 6]. 

A considerable amount of research has been conducted in this area in the past years. 
Ikeda et al. [7] simulated the air-flow from the inlet of the air conditioner and compared their re-
sults with the experimental findings to verify the feasibility of CFD numerical analysis. Aroussi 
et al. [8] simulated the defrosting process of the vehicle side window and indicated the insuffi-
cient design of the experimental vehicle defrosting system. Swales et al. [9] described how to 
combine usage of CAE with a newly developed laser based technique and provided an excellent 
method for maximising defrost and demist performance. Kang et al. [10] studied the automo-
tive defrosting system and verified the simulation results. They found that the air-flow from the 
outlet is not uniform and does not cover the entire windshield area, thus affecting the defrosting 
efficiency. Karim et al. [11] found that the structural adjustment of defrosting ducts can improve 
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the defrosting performance of vehicle windshields. Huang et al. [12] improved the internal 
structure of the defroster duct to improve the defrost effect. Li et al. [13] used the resistance 
wire heating method to accelerate the defrosting of the bus air conditioner due to insufficient 
heat source, which affects the defrosting effect of the windshield. However, optimizations of 
the model are based on working experience. The optimization method is slightly inefficient and 
blind. Moreover, obtaining the best results is difficult using this method.

In recent years, response surface methodology (RSM) has been employed in many 
design fields. For example, Yang et al. [14] used RSM to optimize the centrifugal fan and 
reduce automobile noise. However, RSM also has certain limitations. Cho et al. [15] believed 
that RSM is best for two or fewer design variables, and optimizing multiple design variables 
simultaneously is difficult. In most cases, the object that must be modeled is a complex large 
system, and no explicit mathematical expression exists between the design variables and the 
target. Neural networks can capture the non-linear relationship between variables and the target 
and solve the optimization problem of multiple design variables. Some researchers have suc-
cessfully applied neural networks to optimization with multiple variables. Atuanya et al. [16] 
used neural networks to predict the mechanical properties of palm wood fiber-recycled low den-
sity polyethylene composite. Selvan [17] and Esonye et al. [18] used RSM and neural networks 
to model the optimization with multiple variables and found that the neural network has a high 
modelling accuracy for the optimization with more than three variables. The neural networks 
introduce improved results for the optimization with multiple variables.

Radial basis function neural network principle

The neural network is a mathematical model that imitates the behavior of the biolog-
ical neural network and performs the distributed parallel information processing. The neural 
network comprises many neurons that are connected. The structure of the neural network is 
changed in accordance with the input information. The modelling process mainly adjusts the 
weights between neurons. Up to now, the types of neural network models are quite rich and 
have developed to nearly 40 kinds [19, 20]. Among the many networks, radial basis function 
neural network (RBFNN) has the advantages of simple structure and solid mathematical foun-
dation, thus, this network is widely used in many fields.

The structure of the RBFNN is a 
three-layer forward network, (fig. 1, which 
includes input, hidden, and output layers. The 
first layer is the input layer, which comprises 
the signal source node. This layer only serves 
to transmit signals and the second layer is the 
hidden layer, and the number of hidden layer 
nodes is determined by the problem described. 
The transformation function (radial basis func-
tion) of neurons in the hidden layer, as a local 

response function, is a non-negative linear function with radial symmetry and attenuation the 
center point. The third layer is the output layer, which responds to the input [21, 22].

The Gaussian function is commonly used as the activation function of RBFNN. The 
expression of the Gaussian function is presented:
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Figure 1. Structure of RBFNN
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where R(xp – ci) is the output of ith hidden layer node, ||xp – ci ||2 – the Euclidean norm, xp – the 
pth input sample, ci – the ith Gaussian function center of the hidden layer, δi – the variance of 
the ith Gaussian function, which is also called the width or expansion constant of the Gaussian 
function, m – the number of hidden layer nodes, and n – the number of hidden layer nodes.

The output layer has only one node, which is the prediction result. The output can be 
expressed as shown:
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where ωi is the weight of the hidden layer to the output layer and bi – the bias term.

Topology analysis 

Mathematical models of defrosting

The realizable k-ε turbulence model [23] was adopted in the article, which can simu-
late rotary shear flow, free flow and submerged water jet well, as well as the velocity and direc-
tion of air-flow generated in the flow field. Its governing equations are given:
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where k is turbulent kinetic energy, ε – the turbulent dissipation rate, ρ – the air-flow density,  
xi, xj – are the position vectors, ui – the velocity, µt – the turbulent viscosity coefficient, µ1 – the 
molecular viscosity, σk, σε – the turbulent Prandtl number of turbulent kinetic energy and tur-
bulent dissipation rate, which are 1.0 and 1.3, respectively, Gk – the turbulent kinetic energy 
caused by average velocity gradient, Gb – the turbulent kinetic energy caused by buoyancy,  
YM – the contribution of compressible velocity turbulent pulsation expansione, C1ε, C2ε, and C3ε 
are constants, and Sk, Sε are user-defined source items.

The defrosting of automobile windshield is the melting process of frost layer under 
the hot air-flow and the energy equation can be expressed:
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where H is the enthalpy, v→ – the fluid velocity, and S – the active phase shown
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where σ = 0.001 to avoid a denominator of 0, Amush = 105, v→P – the velocity of ice-water mixture, 
β – the liquidus fraction. The β = 0 when the frost temperature, T, is lower than the solidus tem-
perature Tsolidus, β = 1 when T is higher than the liquid temperature Tliquidus, when T is between
 Tsolidus and Tliquidus, β = (T – Tsolidus)/(Tliquidus – Tsolidus). 

Numerical simulation 

Figure 2 shows the simulation model of the automobile. The model includes a cabin, 
a glass layer, a frost layer, a defrosting duct, and a seat. The front windshield is divided into A, 
A′, and B areas [24].
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The entire computational domain is divided by tetrahedral meshes. The mesh is re-
fined near the defroster duct and the frost and glass layers. The glass and frost layers each have 
five layers [25], as shown in fig. 3.

     
     Figure 2. Physical model of the automobile                      Figure 3. Grids of simulation domain

The air-flow is assumed to be incompressible and the environmental pressure is stan-
dard atmosphere. The inlet and outlet are set as mass-flow inlet and pressure outlet, respec-
tively. The air temperature changes with time, the initial temperature is –18 °C, and the final 
temperature is 47.3 °C.

The ANSYS FLUENT software was used for CFD modelling and solution [26]. Sim-
ple algorithm in pressure-velocity coupling is adopted as the solution method and the sec-
ond-order upwind difference scheme is used in the discrete differential algorithm. During the 
solutions, the convergence precision of the continuity and momentum equations are within 10–4, 
and that of the energy equation is less than 10–5.

Table 1 shows the flow distribution of each outlet after computation convergence. 
The flow rate of the driver’s side outlet accounts for 10.96% and that of the passenger side is 
11.04%; the flow distribution of the two outlets is reasonable. The flow rate of the central outlet 
accounts for 38.56%, the left side outlet is 19.44%, and the right outlet is 20%. The flow rate of 
the central outlet is approximately the sum of the left and right outlets, and the flow distribution 
of the three outlets are unreasonable.

Table 1. Flow distribution of each outlet
Flow rate [kgs–1] Percentage [%]

Left outlet 0.0243 19.44
Central outlet 0.0482 38.56
Right outlet 0.0250 20.00
Driver-side outlet 0.0137 10.96
Passenger-side outlet 0.0138 11.04
Total 0.125 100

Topological improvements

Figure 4 shows the defrosting duct structure. The left, central, and right outlets are 
responsible for the defrosting operation of the front windshield. The driver- and passenger-side 
outlets are responsible for the side windshields.



Fan, P., et al.: Optimization of the Automotive Air Conditioning System ... 
THERMAL SCIENCE: Year 2022, Vol. 26, No. 4B, pp. 3477-3489 3481

 
Figure 4. Defrosting duct structure and outlet position

The structural topology scheme aims to add 
horizontal grilles at the outlets, as shown in fig. 5. 
The horizontal grille can increase the resistance in 
the defrosting duct and squeeze the air-flow of the 
central outlet to the left and right outlets, thus result-
ing in reasonable flow distribution. The horizontal 
grille also helps the even distribution of air-flow over 
the windshield to improve defrosting efficiency.

Optimization Based on RBFNN

Design strategies

The RBFNN is used for the optimization of 
the air conditioning structure to improve the de-
frosting performance of the automobile. Figure 6 
shows the optimization process.

The air-flow velocity on the A, A′, and B 
areas of the front windshield f is chosen as the op-
timization objective. The optimization objective 
can be expressed as shown in eq. (7).

1 2 3A A BMaxf v v vω ω ω′= + + (7)

where vA, vA′, and vB are, respectively surface 
weighted average air-flow velocity of the A, A′, 
and B areas. The ω1, ω2, and ω3 are weight coef-
ficients. The defrosting work in A area was com-
pleted first, followed by the A′, and the B areas. 
Thus, ω1, ω2, and ω3 are, respectively set to 0.5, 
0.3, and 0.2.

The length of the left and right outlets is 
the same due to the structural symmetry of the 
left and right outlets. The lengths of the left out-
let, L1, and the central outlet, L2, and the air-flow 
jet angle, α, are chosen as design variables. The 
range of values of L1, L2, and α is 170 mm ≤ L1 ≤ 
350 mm, 0 mm ≤ L2 ≤ 150 mm, and 0° ≤ α ≤ 90°, 
respectively. Thirty groups of analytic models are created using the Latin hypercube sampling 
method for the selection of sample points. The concrete parameters of each group and the final 
simulated values are presented in tab. 2. 

Figure 5. Topological improvements

Figure 6. Optimization process
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Table 2. Concrete parameters and final values in each group

Groups
Design variables Simulated value Predicted value

L1 [mm] L2 [mm] α [°] f [ms–1]

1 255 17 89 2.918 1.978

2 204 51 71 3.490 3.428

3 170 102 58 3.447 3.375

4 238 34 28 3.430 3.501

5 221 68 32 3.216 3.287

6 340 119 13 4.156 4.138

7 187 17 11 3.879 3.743

8 170 51 82 4.045 3.123

9 187 68 23 3.612 3.702

10 306 34 7 3.192 2.808

11 221 85 36 3.129 2.959

12 272 68 2 3.090 3.317

13 238 119 73 3.160 2.642

14 323 68 55 3.637 3.450

15 306 0 86 1.25 2.643

16 204 85 34 3.308 3.316

17 255 85 52 3.255 2.552

18 238 102 20 3.179 3.266

19 204 34 45 3.301 4.147

20 187 51 66 3.984 3.892

21 289 85 48 3.979 2.895

22 306 17 46 2.756 2.869

23 238 136 41 3.249 3.325

24 340 136 63 3.904 4.596

25 272 119 77 3.223 3.157

26 323 119 3 4.071 4.098

27 323 17 79 3.227 3.402

28 255 17 16 2.879 3.490

29 289 85 62 3.493 3.007

30 289 119 26 4.009 3.820
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Approximate model construction

An approximate model was constructed by RBFNN. First, the 30 sets of sample points 
are merged into a data set, where L1, L2, and α are independent input parameters. The approxi-
mate model generated a related parameter, that is, the air-flow velocity on the front windshield 
A, A′, and B areas. The accuracy of the approximation model is verified by the coefficient of 
determination, R2, and correction factor, R2

adj. The coefficient of determination, R2, measures the 
predicted value of the sample on the total variation proportion of the average value ȳ. The ideal 
model is one that can reflect all variabilities. The R2 is a number between 1 and 0. The analytic 
model will be improved when the number is close to 1. The model is considered sufficiently 
good to be accepted when R2 is between 0.95 and 1. The model is considered and then checked 
further with the modified R2

adj when the number is between 0.9 and 0.95. The formulas for R2 
and R2

adj are, respectively presented:
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where N is the number of design points, k – the number of variables in the approximate model, 
yi – the simulation value, y^ – the predicted value, and ȳ – the average of the simulated values.

Table 2 shows the final predicted values of the approximate model. The regression 
coefficients of training, test, validation, and overall model developed using RBFNN are shown 
in fig. 7. The value on the X-axis is the simulated value. The value on the Y-axis is the predicted 
value of the approximate model by the developed RBFNN. The high regression value reveals 
that the predicted values are substantially close to the simulated values for all data sets, which 
is an indication of the successful development of the RBFNN model. The best performance 
validation is obtained at the 6th iterations as shown in fig. 8. Equatiions (8) and (9) show that the 
value of R2 is calculated to be 0.983, and the value of R2

adj is 0.981. The fitting effect of the ap-
proximate model is satisfactory. The optimal value for the response f is 4.623 m/s. The optimal 
combination of parameters is L1 = 340 mm, L2 = 119 mm, and α = 62°.

Analysis of optimization

Table 3 shows the flow distribution before and after optimization. Excessive flow in 
the central outlet is distributed to the left and right outlets after optimization. The flow rate at 
the central outlet was reduced by 9.93%, the flow rate at the left outlet was increased by 3.90%, 
and the flow at the right outlet was increased by 4.16%.

              Table 3. Flow distribution before and after optimization
Before [%] After [%]

Left outlet 19.44 23.34
Central outlet 38.56 28.63
Right outlet 20.00 24.16
Driver’s side outlet 10.96 11.86
Passenger’s side outlet 11.04 12.01
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Figure 7. Regression coefficients of training, test, validation, and overall model

Figure 8. Best performance validation

Figure 9 shows the streamline distribution of the front windshield. The streamlines in 
the A and A′ areas are relatively concentrated before optimization, thus, both areas can achieve 
an improved defrosting effect. Streamlines are absent in the lower left and right corners of thee 
B area, thus achieving poor defrosting effect. The streamlines completely cover the A, A′, and B 
areas after optimization, and the defrosting effect is improved.
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Figure 10 shows the steady-state air-flow velocity. The white area means that the 
air-flow velocity is larger than 1.5 m/s and demonstrates an improved defrosting effect. The 
defrosting effect of the A and A′ areas is remarkable before the optimization. The lower left and 
right corners of the B area have poor defrosting effects and are called defrosting dead corners. 
The defrosting dead corner accounts for approximately 20% of the B area. The defrosting dead 
corner is reduced from approximately 20-5% after optimization, and the defrosting effect is 
improved. This finding is consistent with the conclusions drawn in fig. 9.

Experimental verification

Verification of the frost layer melting effect

In the experiment, the test instruments include the Burke Porter Group Company 
drum test stand, spray gun, thermometer, engine tachometer, stopwatch, anemometer, voltmeter 
and camera. The environmental temperature is –18 °C ±3 °C, and the horizontal component of 
air velocity is less than 2.2 m/s. First, the test vehicle enters the low temperature chamber and 
needs to be parked for at least 10 hours. Then, the spray gun sprays water on the outer surface of 
the windshield to form a uniform ice layer. Spray velocity is 0.044 g/cm2, the nozzle is 200~250 
mm away from the glass surface, whose direction is perpendicular to the windshield. After the 
formation of uniform ice, the car still has to be parked in the low temperature chamber for 30-
40 minutes. Then start the engine and open the defrost system at the same time, which means 
the defrost test begin. The test personnel recorded the defrost status every 5 minutes and took 
photos. Figure 11 compares the simulation results with the experimental results.

Figure 9. Steady-state streamline distribution; (a) before optimization and  
(b) after optimization

Figure 10. Steady-state air-flow velocity near the wall; (a) before optimization 
and (b) after optimization
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Figure 11. Frost melting effect; (a) 0, (b) 10, (c) 20, and (d) 25 minutes

The frost layer began to melt in 10 minutes. The defrosting area in A area reached 
80% at 20 minutes, and the defrosting area in A′ area reached 65%. The frost layers in A, A′, 
and B areas were all melted at 25 minutes, and the defrosting work was almost completed. 
Comparing the simulation and the experimental results, the position of the initial melting is the 
same, but the experimental melting area is slightly larger than the simulation. Figutre 12 shows 
the variation of the outlet air temperature per second. From 0-12 minutes, the inlet air tempera-
ture of the vehicle increases from –18 ℃ to approximate 10 ℃. Early experiments reveal that 

the internal temperature of the front windshield 
increased, but the heat exchange between the 
glass and frost layer is not obvious. From 10-25 
minutes, there has been a significant difference 
between the internal and external temperature 
of the front windshield, and as time passes, the 
heat transfer becomes better. From 25-40 min-
utes, the air temperature has reached more than 
30°, during which time the defrost efficiency 
is getting faster and faster. in the 40th minute, 
the frost layer on the front windshield had been 
completely removed.

Verification of air-flow temperature

The left and right outlets are structurally symmetrical. Thus, monitoring the air-flow 
temperature at the left and central outlets is necessary. Figure 13 compares the optimized sim-
ulation values with the experimental values. The results show that the experimental air-flow 
temperature is always higher than that of the simulation, thus, the experimental melting area is 
slightly larger than the simulated melting area. The air-flow is heated as it passes through the 
defrosting duct due to the generated heat during the experiment, while the simulation ignores 
the effects of convective heat transfer between the engine and the air-flow. The temperature 
difference gradually decreases with the increase in time, and the experimental melting area 
tends to be consistent with the simulated melting area. This result is in accordance with the 
conclusions drawn in fig. 11.

Figure 12. Air outlet temperature of  
each air outlet
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Figure 13. Air-flow temperature of the main outlet; (a) left outlet and (b) central outlet

Conclusions

A simulation analysis of the original automotive air conditioning system is conducted, 
and the simulation results revealed that the flow distribution is unreasonable. A structural topol-
ogy scheme for additional horizontal grilles at the outlets is proposed to solve this problem. The 
following optimization parameters of the air conditioning are then determined: the length of the 
left outlet, L1, the length of the central outlet, L2, and the air-flow jet angle, α. The RBFNN is 
used to identify the optimal combination scheme of these parameters. The optimal combination 
of these parameters is L1 = 340 mm, L2 = 119 mm, and α = 62°.

The flow of each outlet is rationally distributed after optimization: the flow rate of the 
central outlet is reduced by 9.93%, the flow rate of the left outlet is increased by 3.90%, and 
the flow rate of the right outlet is increased by 4.16%. The defrosting dead corner is reduced 
from 20-5%, and the defrosting performance is improved. The optimized model is verified by 
experiments. The defrosting area reached 80% at 20 minutes, and the defrosting area reached 
65%. The frost layers were melted at 25 minutes. The experimental results are consistent with 
the simulation results, which verifies the effectiveness of the optimization model.
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Nomenclature
bi – bias term
ci  – ith Gaussian function center of the  

hidden layer
Gb – turbulent kinetic energy caused  

by buoyancy, [m2s–2]
Gk – turbulent kinetic energy caused by average 

velocity gradient, [m2s–2]
H – enthalpy, [J]
k – turbulent kinetic energy, [m2s–2]
N – number of design points
n, m – number of hidden layer nodes
T – temperature, [K]
ui – velocity, [ms–1]
v→ – fluid velocity, [ms–1]
v →P – velocity of ice-water mixture, [ms–1]
xi, xj – position vectors, [m]
xp – pth input sample

YM – contribution of compressible velocity 
turbulent pulsation expansion

y – predicted value
yi  – simulation value
y ̄  – average of the simulated values

Greek symbols

β – liquidus fraction
δi – variance of the ith Gaussian function
ε – turbulent dissipation rate
µt – turbulent viscosity coefficient, [kgm–1s–1]
µ1 –  molecular viscosity
ρ – density, [kgm–3]
σk, σε  – turbulent Prandtl number of turbulent 

kinetic energy and turbulent dissipation
ωi – weight of the hidden layer to the output layer
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