SIMULATION AND EXPERIMENTAL STUDY ON PERFORMANCE ANALYSIS OF SOLAR PHOTOVOLTAIC INTEGRATED THERMOELECTRIC COOLER USING MATLAB SIMULINK

Lalith Pankaj Raj NADIMUTHU¹, Divya Arputham SELVARAJ² and Kirubakaran VICTOR³*

¹, ² Research Scholar, Centre for Rural Energy, The Gandhigram Rural Institute-Deemed to be University, Gandhigram-624302, Dindigul, Tamil Nadu, INDIA
³ Associate Professor, Centre for Rural Energy, The Gandhigram Rural Institute-Deemed to be University, Gandhigram-624302, Dindigul, Tamil Nadu, INDIA

* Corresponding author e-mail address: kirbakaran@yahoo.com

The present study investigates the performance of solar photovoltaic integrated thermoelectric cooler (TEC) using MATLAB Simulink. The enhancement of efficiency has been achieved using an effective heat removal mechanism from the hot side heat sink. Since the hot side temperature is a crucial parameter. The intrinsic material properties like Seebeck coefficient (a), Thermal Conductance (K) and Electrical resistance (R) of the thermoelectric module are carefully estimated using analytical method and reported. The MATLAB Simulink Peltier module is developed based on the estimated intrinsic properties. The effect of system Voltage (V) and Current (A) on the thermal parameters like cooling capacity (Qc) and Coefficient of performance (COP) has been investigated. The simulation study is validated by conducting a series of experimental analysis. The experimental model is equipped with a 100 Wp polycrystalline solar photovoltaic module to integrate and power the 12V/5 A of the 60-Watt thermoelectric cooler. Moreover, the results reveal that there is a significant effect of ambient and hot side temperature on the thermoelectric cooler performance. The fin-type conductive mode of heat transfer mechanism is adopted along with the convective forced air-cooling system to achieve effective heat removal from the hot side. The infrared thermographic investigation is carried out for ascertaining effective heat removal.

Keywords: Thermoelectric cooler; Solar Photovoltaics; Analytical Method; Thermal Modelling; MATLAB Simulink; Infrared Thermography

1. Introduction

Renewable energy utilization is ensuring sustainability. The intervention of solar photovoltaic energy in refrigeration leads to green refrigeration [1]. In Agriculture and Dairy industry, the need for refrigeration is inevitable; this is because of the Post-harvest treatment (removal of field heat), storage of agro produce, milk and meat cooling during transport. The conventional cold storage system has
moving parts, which is the primary threat in reliable cold storage. However, the solid-state thermoelectric based micro cold storage will resolve the above issue.

A thermoelectric module is made up of two or more elements of N and P-type doped semiconductor material. These elements are electrically connected in series to increase the voltage and thermally connected in parallel to reduce the overall thermal coefficient [2]. A variety of dissimilar profiles, substrate constituents, metallization designs, and mounting possibilities are available. Cooling capacity (heat dynamically pumped through the thermoelectric module) is proportional to the magnitude of the input DC electric current and the thermal conditions on each element's side. By varying the input current from minimum to maximum, it is possible to regulate the heat flow and control the surface temperature. The high electronic package TEC performance analysis is carried out by the high-power thermoelectric modules. The intrinsic design parameters like Seebeck coefficient (α), Thermal Conductance (K) and Electrical resistance (R) are essential for better performance of TEC. These data will not be disclosed by the manufacturer datasheets [3]. The iterative technique is adopted to overcome the issue of intrinsic design parameters of the TEC. The analytical method [3] is adopted for appropriate thermoelectric module selection in the MATLAB Simulink. The simulation design is highly recommended to reduce the design cycle [4, 5]. The performance analysis of the heat exchanger is carried out using MATLAB for better design consideration[6]. Effective heat removal can be achieved by the convective mode of heat transfer [7, 8].

Solar photovoltaic technology is a renewable energy technology and highly suitable for stand-alone power operation [9, 10]. Moreover, the solid-state operation, DC power output, reliability, and durability [11-13] (life span of 25 years) of solar photovoltaics are considered for the integration with the thermoelectric cooler. Solar photovoltaic power utilization and energy optimization is ensuring sustainability by the carbon emission reduction [14, 15]. Therefore, the development of a zero-emission refrigeration system using the Peltier effect is significant for sustainability.

The design and development of a solar photovoltaic integrated thermoelectric cooler (TEC) are identified as a significant research gap. The MATLAB Simulink is developed for reducing the design cycle and helps in integrating solar photovoltaics with the thermoelectric cooler. The optimal operating point is identified through the simulation and it is validated through the experimental analysis.

1.1. Intrinsic properties of thermoelectric module selection

Generally, the quality of the thermoelectric materials is determined by their intrinsic properties of the material. To obtain high-quality thermoelectric element, high Seebeck coefficient, high electrical conductivity and low thermal conductivity are desirable properties of thermoelectric materials[2]. The Seebeck coefficient is a property of the material that determines the performance ability of the module. Thermoelectric devices require low thermal conductivity materials to reduce the parasitic transfer of heat across each leg[4]. Nanostructures are adopted for the autonomous control of electron and phonon transport [16]. The nanomaterials have extremely low thermal conductivity due to boundary scattering phenomena. In addition, thermoelectric materials are good electrical conductors [4]. The optimal value of electrical resistivity of the semiconductor materials will lies between the region of $10^{-3} \, \Omega \, m$ to $10^{2} \, \Omega \, m$ [2]. The variation in the resistivity is based on the charge carrier concentration and mean free path of charge carrier by the surface scattering and reflection [17].
2. Methodology

The analytical methodology is adopted for obtaining the intrinsic properties like Seebeck coefficient (α), thermal conductivity (K) and electrical resistance (R) of the thermoelectric module. Based on the obtained intrinsic parameters the MATLAB Simulink based solar photovoltaic thermoelectric cooler is developed. The worst-case scenario is taken for the design of a solar photovoltaic module. The electrical and thermal performance studies are carried out using the MATLAB Simulink model. The various electrical parameters like operating voltage, operating current and operating power characteristics are obtained for the performance analysis of solar integrated thermoelectric cooler. Moreover, thermal parameters like cold side temperature, hot side temperature, ambient temperature, cooling capacity and coefficient of performance are obtained for the thermal performance analysis. Finally, the relative error analysis is carried out for the simulation and experimental results for the validity of the Simulink model. In addition, the infrared thermographic technique is obtained to ensure effective heat removal from the hot side of the thermoelectric cooler. The intrinsic properties were estimated by itterative approach. The analytical modelling equation Eq. (1), (2) and (3) are adopted for obtaining the parameters from the manufacture datasheet. The required data is obtained from the manufacturer datasheet.

$$R_m = \left[\frac{(T_{ho} - \Delta T_{max})V_{max}}{(T_{ho}I_{max})} \right] \quad (1)$$

$$K_m = \left[\frac{(T_{ho} - \Delta T_{max})V_{max}I_{max}}{(2T_{ho}I_{max})} \right] \quad (2)$$

$$S_m = \left[\frac{V_{max}}{I_{ho}} \right] \quad (3)$$

The Peltier device of MATLAB Simulink is developed based on the following heat flow governing equations. The ceramic thermal port ‘A’ and thermal port ‘B’ are developed by Eq. (4) and (5) respectively. The Cooling Capacity (Q_c) and Coefficient of Performance (COP) of the Peltier device are calculated using Eq. (6) and (7) respectively. The percentage error analysis is a measure of accuracy. Eq. (8) gives the formula to carry out the error analysis for validation.

$$Q_A = \alpha T_A I - \frac{1}{2} I^2 R + K (T_A - T_B) \quad (4)$$

$$Q_B = -\alpha T_B I - \frac{1}{2} I^2 R + K (T_B - T_A) \quad (5)$$

$$Q_c = (m C_p \Delta T) / \Delta t \quad (6)$$

$$COP = Q_c / P_{in} \quad (7)$$

$$\% \text{Percentage error} = \left[\frac{(\text{Experimental result} - \text{Simulated result})}{\text{Experimental result}} \right] \times 100 \quad (8)$$

3. Simulation Analysis of solar photovoltaic integrated thermoelectric cooler

The MATLAB Simulink based solar photovoltaic integrated TEC modelling is carried out by the electrical and thermal energy conversion equations in the MATLAB simscape and shown in Fig.1. The solar photovoltaic module, the Peltier device and its control blocks are the significant component involved in the modelling block [5]. The solar photovoltaic module block modelling is carried out by the series configuration of 36 number of solar cells. Each solar cell characteristics is parametrized with the quality factor varies from 1 to 2. The solar photovoltaic integrated thermoelectric cooler configuration is designed using MATLAB Simulink.
3.1. Results and discussion of simulation analysis

The left image of Fig.2 illustrates the current versus voltage characteristics curve of generated solar photovoltaic power. The solar light energy is converted into direct electrical power. The maximum power point is achieved by considering the thermoelectric cooler. The voltage versus power characteristics curve illustrated the amount of power input to the TEC in the right image of Fig.2.

According to the Peltier effect, the amount of current flow is directly proportional to the cooling capacity. The left image of Fig.4 illustrates the operating current versus the cooling capacity of the solar integrated thermoelectric cooler. Here, the maximum cooling capacity of 70 W is achieved during the simulation. Moreover, the right images of Fig.4 illustrate the operating current versus coefficient of performance. This describes the efficiency of the solar integrated TEC. The COP depends on driving power, change in temperature and efficiency of the module [3]. Higher COP can be achieved at lower ΔT only. The optimal operating point is necessary for better COP and cooling capacity.

Fig. 1 MATLAB Simulink Model of Solar Photovoltaic Integrated Thermoelectric Cooler

Fig. 2 IV Characteristics (left) and Power Characteristics (Right) of Solar Photovoltaic Module
Fig. 3 Cooling Capacity (left) and Coefficient of Performance (Right) of solar integrated TEC

The left image of Fig.4 illustrates the input power characteristics of TEC. Here, the operating current and operating voltage of the solar integrated TEC is highly significant and consuming 55 W of power. The input electrical power is fed directly for the better operation of the TEC. The right image of Fig.4 gives the thermal output characteristic of the thermoelectric cooler. The cooling capacity is a measure of effective workout and the coefficient of performance is a measure of the efficiency of the system. The optimal operating point is essential for the better performance of TEC. It is impossible to achieve maximum values of cooling capacity and COP simultaneously.

Fig. 4 Operating Power Characteristics (left) and Thermal Output characteristics of Solar Integrated TEC

4. Experimental Analysis of solar photovoltaic integrated thermoelectric cooler

The selection of thermoelectric element is a crucial phase of designing the cooler. The optimum match between the design requirement and material’s properties should be ensured while selecting the module's material. The materials should have a high Seebeck coefficient, high electrical conductivity, and low thermal conductivity for the significant figure of merit and power factor [2]. In addition to that, the material should possess the following criteria, chemically, thermally, and structural stability must withstand the vibrations and thermal cycle with no noteworthy degradation in the life span of about 5 to 10 years at the industrial operating condition in a cost-effective manner[18].

The TEC experimental setup is powered by a carefully chosen thermoelectric element based on the precise design shown in Fig.5. The TEC is having the potential of operating at any rugged operating condition with the proper Polyurethane foam insulated container. The K-Type thermocouple is employed in the data logging phase of one minute once the sampling interval is programmed in the data logger. The setup is equipped to conduct the thermal and electrical performance analysis of the solar photovoltaic integrated TEC and shown in Fig.6. The setup is powered with the 100 Wp solar
photovoltaic module with the Pulse Width Modulation based 12V/8A charge controller for effective integration. A lead-acid battery of 35Ah is coupled with the setup for the stable operation of the thermoelectric cooler. The hot side of the Peltier element is equipped with an aluminium-based heat sink. The heat sink overall dimension is 100 × 100 × 20 mm. In addition, the 3-Watt 12 V/0.25 A cooling fan is installed over the heat sink for the convective mode of heat transfer.

![Experimental Setup of the Solar Photovoltaic Integrated Thermoelectric cooler](image)

4.1. Results and discussion of experimental analysis

The left image of Fig. 6 illustrates the Time versus Temperature of the thermoelectric cooler. The cold side temperature reduction of 6 °C is achieved during the experimental phase. The heat sink temperature result reveals that the amount of heat liberated at the hot side of the thermoelectric module and its effective removal. The cold chamber temperature is highly influenced by the hot side temperature generation and ambient temperature. Therefore, thermal performance increases as the hot side temperature decrease. The time versus cooling capacity (Q_c) of TEC is shown in the middle image of Fig.6. The maximum cooling capacity is indicating the maximum work output to remove the heat from the cold side. The reduction of cold side temperature is ensuring the reduction in cooling capacity with respect to time. The maximum cooling capacity of 58.15 watts is achieved during the experimental phase. The right image of Fig.6 illustrates the time versus coefficient of performance of TEC. The maximum COP is achieved during the initial work output of heat removal from the cold side of the TEC. The drop in the cold side temperature and maximum change in temperature (ΔT) leads to the maximum COP reduction. The maximum COP of 0.97 is achieved during the experimental phase.

![Thermal Performance of the Solar Photovoltaic Integrated Thermoelectric cooler](image)

Fig. 6 Thermal Performance of the Solar Photovoltaic Integrated Thermoelectric cooler
(left- Temperature characteristics; Middle-Cooling capacity; Right- Coefficient of Performance)
The percentage error analysis is carried out for the simulation and experimental results. The percentage error gives the level of accuracy. The 0.68 and 11.16 % deviation are calculated for cooling capacity and COP of the experimental and simulation results.

The infrared thermographic result shown in the left image of Fig.10 illustrates the natural draught cooling mechanism (i.e.,) natural air-cooling technique is employed for the heat sink. In addition, the right image of Fig.7 illustrates the forced air circulation technique for effective heat removal from the hot side heat sink. The maximum heat removal of 33.41% is achieved by reducing the hot side temperature from 55.1°C to 41.3 °C.

5. Conclusion

The analytical method of performance analysis on the solar integrated thermoelectric cooler is carried out using the MATLAB Simulink and simulation is validated by conducting an experimental analysis. The percentage error analysis is carried out for ensuring the validity of the simulated model. The effect of input voltage and current is having a significant effect on solar integrated TEC cooling capacity (Q_C) and Coefficient of Performance (COP).

In the experimental analysis, the cooling capacity of 6.94 W and COP of 0.15 is achieved with respect to the time taken for cold side temperature to reach 6 °C. In the simulation analysis, the maximum COP of 0.13 and cooling capacity of 6.89 W is achieved. The maximum temperature reduction is achieved during the input current of 4.9 A. The optimal current is essential for the better performance of the solar integrated thermoelectric cooler. The percentage error value is calculated as 0.68 % for cooling capacity (Q_C) and 11.16 % for Coefficient of Performance (COP). Therefore, the analytical method of performance analysis is highly significant.

The infrared thermography reveals that 33.41 % of maximum heat removal is achieved in the forced convective mode of the heat transfer mechanism. The effective heat removal from the hot side of the TEC ensures the thermal performance of the TEC by the reduction of cold side temperature. Therefore, the effect of hot side temperature and ambient temperature are highly significant in cold side temperature reduction.

From the analysis, the solar energy integrated thermoelectric cooler can be used for various refrigeration application like storage of tropical agro produce. Renewable energy utilization paves a way for a green refrigeration system.
Acknowledgment

The authors gratefully acknowledge the Department of Science and Technology (DST), Government of India for financial support under the DST-INSPIRE Fellowship Scheme (ID No: IF180435). Also, acknowledge the funding received from the All-India Council for Technical Education (AICTE) under Modernization and Removal of Obsolescence (MODROBS) scheme (AICTE File No. 9-41/RIFD/ MODROB/Policy-1/2017-18 Dt. 26.03.2019)

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>Specific heat</td>
<td>$[\text{Jkg}^{-1}\text{K}^{-1}]$</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient of Performance</td>
<td>[Dimensionless parameter]</td>
</tr>
<tr>
<td>ΔT</td>
<td>Change in temperature</td>
<td>[$\text{K or }^\circ\text{C}$]</td>
</tr>
<tr>
<td>Δt</td>
<td>Change in time</td>
<td>[second]</td>
</tr>
<tr>
<td>TEC</td>
<td>Thermoelectric Cooler</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Voltage given in manufacturer’s datasheet</td>
<td>[V]</td>
</tr>
<tr>
<td>I</td>
<td>Current given in manufacturer’s datasheet</td>
<td>[A]</td>
</tr>
<tr>
<td>K</td>
<td>Thermal conductivity of the TEC module</td>
<td>[Wm$^{-1}$K$^{-1}$]</td>
</tr>
<tr>
<td>m</td>
<td>Mass of the loaded substance in the TEC</td>
<td>[kg]</td>
</tr>
<tr>
<td>P</td>
<td>Operating thermoelectric power</td>
<td>[W]</td>
</tr>
<tr>
<td>Q</td>
<td>Heat flow of the Peltier Device</td>
<td>[W]</td>
</tr>
<tr>
<td>Q_C</td>
<td>Cooling Capacity</td>
<td>[W]</td>
</tr>
<tr>
<td>R</td>
<td>Electrical Resistance of TEC module</td>
<td>[Ω]</td>
</tr>
<tr>
<td>S</td>
<td>Seebeck Coefficient of TEC module</td>
<td>[V K$^{-1}$]</td>
</tr>
<tr>
<td>T</td>
<td>Temperature of the Peltier Device</td>
<td>[K or $^\circ\text{C}$]</td>
</tr>
</tbody>
</table>

Greek Words

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Seebeck coefficient</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-thermal port</td>
</tr>
<tr>
<td>B</td>
<td>-thermal port</td>
</tr>
<tr>
<td>ho</td>
<td>-hot side of the module</td>
</tr>
<tr>
<td>in</td>
<td>-input</td>
</tr>
<tr>
<td>m</td>
<td>-module</td>
</tr>
<tr>
<td>max</td>
<td>-maximum given capacity</td>
</tr>
</tbody>
</table>

References

[17] Damodara Das, V., Gopal Ganesan, P., Thickness and Temperature Effects on Thermoelectric Power And Electrical Resistivity Of (Bi0.25Sb0.75)2Te3thin Films, *Materials Chemistry and Physics*, 57 (1998), 1, pp. 57-66

Received: 11-12-2020

Revised : 05-09-2021

Accepted: 26-09-2021