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The thermo mechanical buckling and post-buckling behavior of layered compos-
ite shell type structure are considered with the finite element method under the 
combination of temperature load and applied mechanical loads. To account for 
through-thickness shear deformation effects, the thermal elastic, and higher-order 
shear deformation theory is used in this study. The refined higher order theories, 
that takes into account the effect of transverse normal deformation, is used to de-
velop discrete finite element models for the thermal buckling analysis of composite 
laminates. Attention in this study is focused on analyzing the temperature effects on 
buckling and post-buckling behavior of thin shell structural components. Special 
attention in this paper is focused on studying of values of the hole in curved panel 
on thermal buckling behavior and consequently to expend and upgrade previously 
conducted investigation. Using finite element method, a broader observation of the 
critical temperature of loss of stability depending on the size of the hole was con-
ducted. The presented numerical results based on higher-order shear deformation 
theory can be used as versatile and accurate method for buckling and post-buck-
ling analyzes of thin-walled laminated plates under thermo mechanical loads.
Key words: geometric non-linearity, buckling, post-buckling, thermal loads,  

finite element method, shells

Introduction

Thin-walled layered composite structures are increasingly used in any engineering 
branch where structural weight is one of the major aspects in the design process. When compos-
ite materials are being employed computation methods by using numerical simulation (FEM) 
are required. These methods adequately take effects such as material anisotropy, coupling ef-
fects, and shear deformations into account which are inherent in this class of materials.

The composite laminates due to their high specific strength and stiffness are increas-
ingly used in weight-sensitive applications such as aircraft and space vehicles [1-3]. Most of 
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these vehicles have to operate in hostile thermal environments. As a result, the structural com-
ponents of these vehicles are subjected to thermal loads [4-6]. 

Their components are often subjected to combinations of mechanical and thermal 
loading. In fact, many structures are subjected to high load levels and consequently may results 
in non-linear load-deflection relationships due to large deformations of the plate. One of the 
important problems deserving special attention is the study of their non-linear response to large 
deflections and post-buckling.

Many studies according to classical plate theory for the large deflection of multi-
layered composite plates subjected to mechanical or thermal loading are presented in [7, 8]. 
Numerous studies involving the application of the shear deformation plate theory to non-linear 
bending analysis can be found in [9-11]. In contrast, there have been fewer investigations for 
the thermal post-buckling of composite laminated plates [12, 13]. The problem of buckling un-
der thermo mechanical loading has been considered by relatively few investigators [14-16]. The 
analysis of the buckling and post-buckling behavior of isotropic or composite laminated shells 
is a topic of considerable technical importance in number of branches of engineering. Such 
behavior may results from mechanical loading or from thermal loading or from a combination 
of the two, i.e. from thermo mechanical loading. Tauchert [17] contains much information on 
available methods, particularly as related to flat, rectangular plates, and includes details of sev-
eral hundred pertinent references dating up until the mid-1990's. A large part of this literature, 
however, is naturally concerned with buckling under mechanical loading but less information 
exists on the buckling of shells under thermal loading.

In the present paper the particular concern is with the analysis of the buckling and 
post-buckling behavior under thermo mechanical loading of isotropic and composite shell type 
structures. Here the use of FEM in predicting buckling and post-buckling responses of isotropic 
and composite shells subjected to thermal or mechanical loading or combined thermo mechan-
ical loading is observed.

It is useful to mention that various geometric and material non-linearity problems are 
solved by using FEM based on the first order shear deformation theory (FOST) [18-23] and 
here the particular adopted approach presents the FEM in the context of higher-order shear 
deformation theory (HOST).

Non-linear analysis

In the present work, thermal buckling analyses of multilayered composite panel using 
discrete finite element model is presented. The finite element model is based on the refined 
higher order theories [24-28] that considers the effect of transverse normal deformation.

The formulation of the presented shell finite element is based on the single-layer 2-D 
theory because of its ability of an adequate representation of the global behavior (deflections, 
stresses, and buckling loads) of thin composites. The HOST used here, assumes the parabolic 
distribution of the transverse shear stresses across the laminate thickness. The displacement 
field for the parabolic transverse shear deformation through the shell thickness is given:
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The relations (1) are obtained assuming that the transverse shear stresses σ4 and σ5 are 
zero on the shell surfaces:

4 5, , 0, , ,  0
2 2
h hx y x yσ σ   ± = ± =   

   
(2)

The parameters a, b, and c introduced in eq. (1) can have the values zero and one. By 
combining their values, the displacement field given by eq. (1) can very simply describe the 
third order shear deformation theory, the first order shear deformation theory and the classical 
Kirchhoff’s plate theory. In that way it is possible to say that eq. (1) represent the general ex-
pressions for the displacements of an arbitrary point of a multi-layered shell for the third order 
theory. Such a way of presentation of displacements is suitable for subsequent considerations 
of the formulation of a general shell finite element. This is particularly suitable for computer 
programme realization, since by combining parameters a, b, and c, it is possible to obtain the 
desired type of the shell finite element able to describe the thin and thick multi-layered com-
posite shells.

The next governing equation can be used to study the linear/non-linear static and ei-
genvalue buckling analysis and can be written [10, 15, 23]:

[ ] [ ] ( ) ( ) { } { } { }1 2
1 1
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The governing eq. (3) can be used to study the linear/non-linear static and eigenvalue 
buckling analysis by neglecting the appropriate terms [15]:
 – Linear static analysis:

[ ]{ } { } { }M TK F Fδ = + (4)
 – Non-linear static analysis:
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(5)

 – Eigenvalue buckling analysis:

[ ]{ } *
GK T Kδ  = ∆   (6)

where determining matrix [K *G] means that the linear static analysis of the shell using eq. (4) 
have to be carried out. In this analysis the resulting deformation filed is used to determine the 
initial state of stress resultants. For that purpose Mindlin formulation is used [18, 21]. Men-
tioned formulation is also used for matrix [K *G] determination. Solution of eq. (5) can be ob-
tained using Newton-Raphson iteration procedure coupled with displacement control method 
[18]. To achieve equilibrium for each load/displacement step Bergan and Clough [19] proposed 
convergence criteria within the specific tolerance limit of less than 1%.

Following the usual procedure for assembling element stiffness matrices, the equilib-
rium and stability conditions are expressed:

[ ]GK K u Fλ δ+ =   (7)

Thermal buckling analysis

Calculating the critical temperature of buckling due to thermal load is a two-stage 
process. For a specified rise, ΔT, in temperature the thermal loads are computed and a linear 
static analysis is carried out to determine the thermal stress resultants. These stress resultants 
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are then used to compute the geometric stiffness matrix, which is subsequently used in eq. (7), 
to determine the least eigen value, λ, and the associated mode shape δu. The critical temperature 
TCR of the plate is calculated:

CRT Tλ= ∆ (8)
In the present analysis, a four-node quadrilateral from the serendipity family of 2-D 

C0 continuous isoparametric element with 8 DoF per node [28] is used. The formulation of a  
four-nodes shell finite element that can be 
good enough also if applied to the thin mul-
tilayered plates or shells is by no means an 
easy matter. The authors’ experience has 
shown that a good approach to the formula-
tion of a four-node shell finite element can 
be based on the application of the discrete 
Kirchhoff’s theory (DKT) for bending be-
havior. The DKT ensures C1 continuity at 
discrete points on inter-element boundaries. 
The improved four-nodes layered shell ele-
ment is derived combining HOST and DKT, 
fig. 1. More details about that element can 
be found in [27, 28].

In the C0 finite element theory the continuum displacement vector within the element 
is defined:
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In the case of the negligible mid-surface normal stress, σz, the stress-displacement relation-
ships, stress resultants and the constitutive equations associated with HOST are given in [27, 28].

The total stiffness matrix of the element is obtained by the linear superposition of the 
following three independent parts:
 – Part I: Membrane stiffness matrix KM,
 – Part II: Bending stiffness matrix KB, and
 – Part III: Rotational stiffness matrix KΘz

In order to avoid irregular systems of equations in the case of completely plane sys-
tems, a very small rotational stiffness is adjoined to the variable, Θz, defining the rotation about 
the z-axis and it causes a larger stiffness of the system. The displacements (u, v) for the mem-
brane element behavior are approximated by six-term quadratic polynomials as shown in [11] 
and are defined:

( ) ( ) ( )

( ) ( ) ( )

4
2 2

1 2
1

4
2 2

1 2
1

, 1 1

, 1 1

i i
i

i i
i

u N r s U r s

v N r s V r s

α α

β β

=

=

= + − + −

= + − + −

∑

∑
(10)

The displacements b = [αi, βi]T can be taken as some internal displacements having a 
quadratic effect on actual displacement. The membrane element equilibrium relations are orga-
nized in a matrix form:

Figure 1. Improved four-nodes shell finite element
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By static condensation of the internal variables b, one obtains:
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For the element properties the Gauss Quadratic formulae with 2 × 2 points are used. 
By static condensation the internal variables αi, βi are eliminated on element level and the total 
number of membrane DoF per element is not changed.

Numerical examples

In this study three software packages were used. The FEM-based commercial soft-
ware was used for individual validation and comparison of the results, in-house FEM-based 
software SAMKE [29] was used for structural analyses, in which HOST is embedded, and also 
analytical in-house software was used, primary for the purpose of assessment of the service life 
of the structures.

This section presents some numerical examples of non-linear behavior of isotropic 
and composite structure affected by temperature. 

Thermal buckling and post-buckling behavior  
of a curved laminated panel with a hole

In this section results of buckling and post-buckling behavior of a curved laminated 
composite panel with circular hole subjected to thermal loads are shown. The primary goal is to 
verify the computation analyzes of the loss of stability of the considered panel under the action 
of thermo mechanical loads. When considering the stability of a curved composite panel with 
circular hole the effects of variations in laminate stacking sequence, fiber orientation, number of 
layers and aspect ratio of the panels are important parameters to their buckling and post-buck-
ling behavior.

(a)  

Material properties:

Material 1: Isotropic
E = 200 GPa
n = 0.33

α = 9.0 ⋅ 10–6 °C–1

Material 2: Composite
EL = 130.3 GPa
ET = 9.37 GPa

GLT = 4.502 GPa
nLT = 0.33

αL = 0.139 ⋅ 10–6 °C–1

αT = 9.0 ⋅ 10–6 °C–1

[±45°/0°/90°]2S

Figure 2. Geometry presentation (a) and material properties (b) of a curved panel with a hole [15]

(b)
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For the purpose of analyzing the effect of 
a hole size and radius of curvature on panel sta-
bility the curved panel subjected to uniform 
temperature change is considered. For numeri-
cal validation geometry and material properties 
(Material 2) associated with each lamina are giv-
en in fig. 2. Boundary conditions of the model in 
numerical simulations are: x = 0, x = W, y = 0,  
y = L, v = w = wx = 0, w = wy = 0 (without edge 
restraints). For this problem, several finite element 
meshes were tested and practically the same re-
sults were obtained but the finest finite element 
mesh was selected. Established finite element 
mesh is modeled by 4800 elements, i.e. 4960 
nodes and it is presented in fig. 3. 

Additional information is in detail elaborat-
ed and depicted in [15], such as elastic-plastic ma-
terial behavior and stress distribution as a function 
of linearity and non-linearity.

 The results of buckling and post-buckling behavior of a curved layered composite 
panel with a circular hole subjected to thermal loads are presented in figs. 4-7.

Figure 4. The first buckling mode using linear eigenvalue method; (a) TCR = 588 °C, a = 10 mm [15] and 
(b) TCR = 623 °C, a = 35 mm

These figures suggest that effects of thermal loads on buckling and post-buckling be-
havior are obvious. The post-buckling temperature increases with increasing the hole size, which 
could be easily recognised by observing figs. 4-7 and also tab. 1. Comparison of the results de-
rived from numerical simulations and available results presented in [14] clearly suggests that 
good agreements between them is achieved. This agreement is depicted in fig. 5, where thermal 
buckling and post-buckling responses are presented on diagram on which vertical axis represents 
temperature and horizontal axis represents relative displacement, w/h. Presented agreements pro-
pose that conducted numerical simulations were proven as a credible numeric for thermal buck-
ling and post-buckling prediction and can be use for the purpose of numerical investigation of the 
geometrical domain between these two observed geometries defined by radius value of the hole 

Figure 3. Established finite element mesh
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of 10 [mm] and 35 [mm]. The main goal of the numerical investigation of the mentioned domain 
is to study the dependance between radius value of the hole and the critical buckling temperature 
and to inspect and define nearly the highest critical buckling temperature affected by the maximal 
radius value after which the loss of stability of composite panel occurs.

The effect of radius value of the hole, a, in a curved layered composite panel, as shown 
in fig. 6 (Material 2), on the critical buckling values of temperature, TCR, are given in tab. 1.

Table 1. The effect of radius value on critical buckling temperatures
TCR [°C] 588 601 619 634 648 660 674 623
a [mm] 10 15 20 25 27.5 30 32.5 35

Figure 5. Thermal buckling and post-buckling 
responses of a curved panel with a hole [15]

Figure 6. Critical buckling temperature 
as a function of radius of the hole in a 
curved panel

Figure 7. The first buckling mode using linear eigenvalue method; (a) TCR = 601 °C, a = 15 mm,  
(b) TCR = 619 °C, a = 20 mm, (c) TCR = 634 °C, a = 25 mm, (d) TCR = 648 °C, a = 27.5 mm,  
(e) TCR = 660 °C, a = 30 mm, and (f) TCR = 674 °C, a = 32.5 mm
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As results suggest, it is obvious, tab. 1 and fig. 6, that radius value of the hole of about 
32.5 mm presents maximal possible value after which the critical behavior of the composite 
shell structure occurs. It can be concluded from fig. 6 that trend between simulated points could 
be assumed as polynomial. For the simulated domain, using diagram presented in fig. 6, it is 
also possible to determine critical buckling temperature for any radius value of the interest 
which is under the analyzed domain. This means that diagram can be useful as a first iteration 
in practical thermal buckling analyzes when is necessary to determine critical temperature for 
exact radius value, but for that purpose, necessary verification procedure has to be conducted 
for randomly selected hole diameters that differ from those presented in tab. 1, which means 
that percent discrepancies between values calculated using extracted equation, i.e. analytical 
expression, and simulated (FEM-based) values should be examined.

Also, along with tab. 1, for the purpose of visualization, fig. 7 is presented to depict 
the effect of radius value on critical buckling temperatures but only for new six numerical 
points observed within this study.

Additionaly, as a supplementary material Appendices A and B are implemented to 
present deformation patterns for curved composite panels with embedded hole for radius value 
of 10 mm and 35 mm, subjected to thermal loading and bucking and post-bucking behavior of 
a curved isotropic panel without hole under combined thermal and mechanical loads.

Conclusions

Thermal buckling and post-buckling behaviors of curved laminated composite panels 
with holes have been examined by employing the finite element technique based on the HOST, 
which is a tool available in in-house FEM-based software SAMKE, that allows parabolic de-
scription of the transverse shear stresses and therefore, the shear correction factors of the usual 
shear deformation theory are not required. An improved HOST is employed to account for the 
transverse shear strains by maintaining stress-free top and bottom forces of the panel.

The good agreement between numerical and experimental results was achieved which 
leads to conclusion that presented finite element results based on HOST can be used as ver-
satile, accurate and trustable numerical method for buckling and post-buckling analyzes of a 
thin-walled isotropic and composite structural components under thermo mechanical loads. 
Within this research, after conducted validation, numerical investigation of the geometrical do-
main between two radius values was carried out to determine the critical temperature at which 
the loss of stability of a composite panel occurs, depending on the radius of the hole located 
in it. Furthermore, within this domain, a verified analytical expression for the critical buckling 
temperature, as a function of radius of the hole in a curved composite panel, can be extracted, 
which presents common but trustable procedure that can be used as a first iteration in practical 
thermal buckling analyzes when is necessary to determine critical buckling temperature for 
exact radius value.

Proposed well-validated numerical approach can be also used for practical instability 
analysis of the structures made of the fiber reinforced laminates. It should be emphasized that 
presented results were achieved for particular models, but the whole approach is completely 
universal and can be applied on any isotropic or composite panel. This approach can be widely 
used in aircraft and spacecraft industry, and also in design process of the structural components 
that operates in hostile thermal environments in thermal power plants.
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Appendix A. Deformation patterns for curved composite panels with embedded 
hole subjected to thermal loading

Figures A1 and A2 depict numerically obtained deformations of a curved composite 
panels with a hole located in it under the thermal load for radius value of 10 mm, fig. A1, and 
35 mm, fig. A2, as values (geometries) used for the purpose of validation.

Appendix B. Buckling and post-buckling of a curved isotropic panel  
without hole under combined thermal and mechanical loads

This example considers buckling and 
post-buckling behavior of a curved isotropic 
panel without hole subjected to combined ther-
mal load and external mechanical load in form 
of a pressure (geometry in fig. 2 for Material 1 
and same boundary conditions). Computational 
results derived from FEM simulations and the 
effects of combined loads to relative displace-
ment of a curved panel are presented in fig. B1.

Figure B1 shows a non-linear analy-
sis in the domain of temperature change up to  
400 °C (T = 400 °C). The applied thermal load-
ings have a significant effect on the thermal 
buckling and post-buckling responses of con-
sidered curved panel. In fact, the structure un-

Figure A1. Deformation patterns for curved composite panel with hole value of a = 10 mm [15];  
(a) T = 600 °C, (b) T = 850 °C, (c) T = 1000 °C, and (d) T = 1100 °C

Figure A2. Deformation patterns for curved composite panel with hole value of a = 35 mm [15];  
(a) T = 600 °C, (b) T = 850 °C, (c) T = 1000 °C, and (d) T = 1100 °C

Figure B1. Effect of thermo mechanical  
load to relative displacement (w/h) of  
a curved panel  



Vasić, Z. M., et al.: Buckling and Post-Buckling Behavior of Shell Type Structures ... 
4356 THERMAL SCIENCE: Year 2021, Vol. 25, No. 6A, pp. 4347-4357

dergoes buckling at lower temperature when the applied thermal field is uniform through the 
thickness. Thermal stresses developed due to elevated temperature will lead to buckling failure 
of these slender structural elements.
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Nomenclature

a – nodal displacement vector of  
the plate, [mm]

ai – generalized displacement vector in the 
mid-surface, [mm]

b – non-conforming modes, [–]
dn – nodal variables, [–]
E – modulus of elasticity, [GPa]
EL – modulus of elasticity in longitudinal 

direction, [GPa]
ET – modulus of elasticity in transversal 

direction, [GPa]
[F] – global load vektors, [N]
F1, F2 – corresponding equivalent load  

components, [N]
{FM} – mechanical load vector, [–]
{FT} – thermal load vector [–]
GLT – shear module, [GPa]
h – shell/panel thickness, [cm]
[K] – linear stiffness matrix, [–]
[KG] – geometric stiffness matrices due to initial 

stress, [–]
[K *G] – geometric stiffness matrix due initial state 

of stress, [–]
[KT] – geometric stiffness matrices due to thermal 

stress, [–]
L – length of panel, [cm]
M – is the number of nodes in the element, [–]
[N1] – non-linear stiffness matrice, [–]
[N2] – non-linear stiffness matrice, [–]
Ni (r, s) – interpolation function associated with 

the node i and expressed through the 
normalized co-ordinates (r, s), [–]

R – radius of hole, [cm]
(1 – r2), (1 – s2) – incompatible shape functions, [–]
ΔT – temperature rise, [°C]
TCR – critical temperature, [°C]
Ui, Vi – nodal in-plane displacement, [mm]
u, v – translations of the points in the middle 

plane (x, y, z = 0), [mm]
W – width of panel, [cm]
w – out-of-plane deflection, [mm]
w/h – relative displacement 

Greek symbols

α – coefficient of thermal expansion, [1/°C]
αL – coefficient of thermal expansion in 

longitudinal direction, [1/°C]
αT – coefficient of thermal expansion in 

transversal direction, [1/°C]
δ – vector of degrees of freedom associated to 

the displacement field in a finite element 
discretization, [–]

δu – associated mode shape, [–]
λ – least eigenvalue, [–]
n – Poissons coefficient, [–]
n LT – Poissons coefficient of orthotropic plate, 

[–]
Ψ1, Ψ2 – rotations of the normals about the y and 

x-axes, [rad]

Acronym

GNA  – general non-linear analysis
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