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Present investigation is concerned with mixed convection flow of Williamson 
nanoliquid over an unsteady slandering stretching sheet. Aspects of non-linear 
thermal radiation, Brownian diffusion, and thermophoresis effects are addressed. 
Non-linear stretching surface of varying thickness induce the flow. Novel features 
of combined zero mass flux and convective conditions are accounted. Use of ap-
propriate transformations results into the non-linear ODE. Computations for the 
convergent solutions are provided. Graphs are designed for interpretations to 
quantities. Nusselt number and surface drag are computationally inspected. Our 
computed results indicate that attributes of nanoparticles and non-linear thermal 
radiation enhance the temperature distribution. 

Key words: natural and force convection, zero mass flux condition, 
nanoparticles, non-linear thermal radiation  

Introduction 

Nanomaterials are developed by utilization of tiny less nanometer particles into tra-

ditional liquids like water, ethylene glycol and oils. Choi and Eastman [1] firstly illustrated 

this novel kind of materials known as nanomaterials. These nanometers particles have re-

markable physical and chemical characteristics. Such characteristics has motivated several re-

searchers [2-6] to explore the aspects of heat transportation via nanomaterials. They noticed 

that occurrence of nanoparticles in liquids upsurges crucially the liquid thermal conductance 

and subsequently ameliorate heat transport properties. Besides this, numerous researchers 

have recently investigated different convective flow problems regarding nanomaterials, [7, 8]. 

Buongiorno [2] and Tiwari and Das [3] presented a detailed review regarding convective heat 
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transport in nanoliquids. Buongiorno [2] perceived that absolute velocity of nanoparticles can 

be considered as the addition of base liquid and relative velocities. However, the model given 

by Tiwari and Das [3] explores response of nanoliquids taking into interpretation the solid 

volume fraction of nanoliquid. Here we analyze the flow and heat transport features for tar-

geted problem utilizing the model given by Buongiorno [2]. Recently this model has been uti-

lized by several researchers considering different flow situations [9-14]. 

Solar radiation is the non-polluting and non-conventional inception of energy. Actu-

ally this is obtained from radiant light and sun. Recent technology and modern science are 

greatly compelled towards solar radiation due to its extensive utilizations in photovoltaic 

cells, solar heating, artificial photosynthesis, solar electricity, etc. The small size of nanoparti-

cles in nanomaterials consumes radiation extensively with that of de Broglie wavelength. 

Thus nanoparticles also declare the favorable quality of ameliorating radiative characteristics 

of liquids [15]. Few attempts regarding solar radiation can be consulted through [16-18] and 

several attempts therein. On the other hand the simultaneous natural/forced convective flow 

(mixed convection flow) has been reported experimentally, analytically and numerically  

[19-22]. This sort of flow is especially appealing owing to its importance in numerous engi-

neering and industrial utilizations like electronic cooling, chemical process, solar systems, 

liquid storage tanks, nuclear power technology, etc. 
Considerable research have been carried out by the researchers for the analysis of 

laminar flow by moving surface owing to its ever growing industrial utilizations in condensa-

tion process, glass and polymer industries, cooling procedure of metallic plate in cooling bath, 

and plastic sheets discharge. Sakiadis [23] led the basis for the stretched flow problem. Exten-

sive analyses covering numerical and analytical investigations interpreting diverse character-

istics of stretched flow are made [24-26]. Surface with varying thickness finds demand in nu-

clear reactor technology, acoustical components, machine design, architecture, naval struc-

tures, etc. The idea of varying thickness sheet initiated all the way through linearly deforming 

materials like nozzles and needles. Lee [27] initiated the idea of varying thickness. Afterwards 

other researchers [28-31] considered flow features by slendering sheet. 

The novelty of current article is to explore the aspects of non-linear thermal radia-

tion and mixed convection in unsteady flow of Williamson nanofluid bounded by unsteady 

slendering sheet. Energy and concentration expressions are characterized through Brownian 

motion and thermophoresis phenomena. Implementation of homotopic scheme [32-34] help 

us to analyze governing mathematical problems. Plots have been interpreted to examine the 

characteristics of key variables. Representation of skin friction and Nusselt number have been 

numerically examined. 

Problems development 

Here mathematical formulation for unsteady mixed convection 2-D flow of Wil-

liamson liquid stretching sheet of variable thickness, y = δ(x + b)(1–n)/2, δ being small, is giv-

en. Let 0 1[( ) /(1 )]nu U x b t    declares the sheet velocity, fig. 1. Further keep in mind that 

n = 1 corresponds to flat stretching surface. Buoyancy force effects are considered. Energy 

expression is radiation and convective surface condition. Novel aspects of zero mass flux 

condition is also taken at the surface. The aspects of thermophoretic and Brownian diffusions 

are accounted. Ambient and sheet fluid concentrations and temperatures are symbolized by 
( , )w fC T  and ( , )C T   respectively. The resulting boundary layer problems are defined by 

[10, 35-37]: 
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Figure 1. Flow geometry 
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0, ,  as u T T C C y      (6) 

where (u, v) denotes the liquid velocities in direction of x- and y-axis, b and g1 – the rate con-

stants with 0b   and 1 0,     – the time constant, g – the gravitational acceleration, m0 – 
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the dynamic viscosity, hf – the coefficient of heat transport, rf – the density of liquid, bT and 

bC – the coefficient of (thermal, solutal) expansions, T and T0 stand for liquid and reference 

temperatures, n – the velocity power index, (rc)f, (rc)p – the liquid and nanoparticles capaci-

ties, qr – the radiative heat flux, DB – the diffusion coefficient, C0, and C – the reference and 

fluid concentrations,   – the kinematic viscosity, /( )m fk c   for the thermal diffusivity, 

and DT – the coefficient of thermophoretic diffusion.  

The radiative heat flux qr estimation is: 
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where  
 designates the Stefan-Boltzman and m** symbolized the coefficient of mean ab-

sorption. Upon using eq. ( 7 ), the energy expression becomes: 
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By invoking the following transformations: 
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Equation (1) reduces trivially while other eqs. (2)-(6) and (8) are: 

 22 1
We ( ) 0

1 1 2 2

n n n
F FF F F F F F N

n n


     

                 
      

 (10) 

 

3 2 2 3 2 2 2

2

4 4
1 [( 1) (3 ) 3( 1) (2 )

3 3

3( 1)( )]

w w

w

Rd Rd  



 
                 

 

     

 

 
2

b

1
Pr ( ) 0

1 1
t

n n
A F F N N

n n
  

                    
 (11) 

 

t

b

1
Sc ( ) 0

1 1

Nn n
A F F

n n N


    
                  

     
 (12) 

 

t

b

1
( ) , ( ) 1, ( ) 0

1

( ) [1 ( )], ( ) ( ) 0

( ) 0, ( ) 0

n
F F F

n

N

N

  

    


    



         

     

 (13) 



Ullah, I
 

where  
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where λ is the mixed convection variable, Pr – the Prandtl number, N – the buoyancy ratio, Nt 

– the thermophoresis variable, Nb – the Brownian motion variable, Sc – the Schmidt number, 

We – the Weissenberg number, θw – the temperature ratio parameter, A – the unsteadiness pa-

rameter, g – the convective parameter, Rex – the Reynolds number, and Rd – the radiation var-

iable. These variables are: 
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The expressions of skin friction, f ,
x

C  and local heat flux rate at the surface, Nux, 

are: 
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In non-dimensional form we have: 
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Analysis of convergent solutions 

We select initial guesses (f0, θ0, f0) and linear operators ( , , )f  (L L L  in the forms: 
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with  
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where iD (i = 1-7)declared arbitrary constants and have the following values:  
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Homotopic scheme secure us regarding the convergence of approximate solutions. 

Here embedding variables ,f , and  have key role in convergence of derived solutions. 

Figures 2  and 3  indicated the -curves which enable us to pointed out the estimations for 
,f , and .  These acceptable ranges are ( 0.5 1.5),f     ( 0.50 1.84),     

and ( 0.20 1.86).     Moreover the convergence of HAM is inspected through tab. 1.  It 

is noticed from tab.1  that series solutions converge up to 35th order of estimations for velocity 

whereas 40th order of deformations are ample for the temperature and concentration distribu-

tions. 

  

Figure 2. The -curve for f; α = 0.3, We = N =  
= Rd = 0.2 = γ = Nt, Nb = 0.5, Pr = 0.8 = Sc,  

A = 1.0, λ = 0.1, n = 0.9 

Figure 3. The -curve for θ(ξ) and ϕ(ξ); α = 0.3, 
We = N = Rd = 0.2 = γ = Nt, Nb = 0.5, Pr = 0.8 = Sc, 

A = 1.0, λ = 0.1, n = 0.9 

Table 1. Convergence when Rd = N = 0.2 = We = g = Nt, a = 0.3, A = 1.0 = θw, λ = 0.1, Nb = 0.5,  
Pr = 0.8 = Sc, and n = 0.9 

Discussion 

Features of various involved variables on f′(ξ), θ(ξ), f(ξ), –(Re)1/2Cfx, and Nux are in-

vestigated in this section. Such goal is achieved via figs. 4-21 and tabs. 2 and 3. Aspects of a 

on f′(ξ) is depicted in fig. 4. Here decay in f′(ξ) is remarked against a. Features of f′(ξ) due to 

higher n is designed in fig. 5. Here velocity grows in response of higher n. Increase in n im-

proves the surface velocity, which speed up liquid deformation. Behavior of f′(ξ) vs. λ is inter-

preted in fig. 6.  Clearly velocity rises via λ. Physically larger λ accompany a stronger buoyan-

cy force and it leads to an increment in f′(ξ). Velocity f′(ξ) against N is exhibited in fig. 7.  

Order of estimations –f′′(0) –θ′(0) f′(0) 

1 1.05802 0.15715 0.06286 

10 1.14303 0.12665 0.05065 

15 1.14399 0.12421 0.04968 

20 1.14402 0.12419 0.04968 

35 1.14403 0.12413 0.04958 

40 1.14403 0.12412 0.04951 

45 1.14403 0.12412 0.04951 

50 1.14403 0.12412 0.04951 

55 1.14403 0.12412 0.04951 
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Figure 3. Response of f′(ξ) against α; We = N =  
= Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5, Pr = 0.8 = Sc,  

A = 1.0, λ = 0.1, n = 0.9 

Figure 4. Response of f′(ξ) against n; α = 0.3, 
We = N = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5,  

Pr = 0.8 = Sc, A = 1.0, λ = 0.1 

  

Figure 5. Response of f′(ξ) against λ; α = 0.3,  
We = N = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5, Pr =  

= 0.8 = Sc, A = 1.0, n = 0.9 

Figure 6. Response of f′(ξ) against N; α = 0.3, 
We = 1.2, Rd = 0.2 = γ = Nt, θw = Nb = 0.5,  

Pr = 0.8 = Sc, A = 1.0, λ = 0.1, n = 0.9 

  

Figure 7. Response of f′(ξ) against A; α = 0.3,  
We = N = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5,  

Pr = 0.8 = Sc, λ = 0.1, n = 0.9 

Figure 8. Response of f′(ξ) against We; α = 0.3, 
N = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5,  

Pr = 0.8 = Sc, A = 1.0, λ = 0.1, n = 0.9 

Here f′(ξ) grow up against N. Consequences of A on f′(ξ) is depicted in fig. 8. For higher A the 

rate of stretching is smaller in x-direction which eventually diminish f′(ξ). Effect of We on 

f′(ξ) is shown in fig. 9. Larger We decays f′(ξ). Aspects of a on θ(ξ) is presented in fig. 10. 

Here temperature field decays when a is enhanced. Variation of θ(ξ) via n is designated in  
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Figure 9. Response of θ(ξ) against α; We = N = Rd = 
0.2 = γ = Nt, θw = 1.2, Nb = 0.5, Pr = 0.8 = Sc,  

A = 1.0, λ = 0.1, n = 0.9 

Figure 10. Response of θ(ξ) against n; α = 0.3, 
We = N = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5, 

Pr = 0.8 = Sc, A = 1.0, λ = 0.1 

fig. 11. Here temperature field enhances for larger n. Higher temperature θ(ξ) is liked with 

higher λ, fig. 12. In fact, higher λ leads to higher buoyancy forces which results in an incre-

ment of θ(ξ). Impact of N on θ(ξ) is explored through fig. 13. Here temperature is decreasing 

function of N. Physically N is the ratio of concentration to thermal buoyancy forces. Thus an 

enhancement in N corresponds to lower temperature. Remarkable features of θ(ξ) against Nt is 

displayed in fig. 14. It is inspected that θ(ξ) is boosted via Nt. It is because of the fact that in 

thermophoresis process, the heated liquid particles extracted towards cold regime from hot 

surface which corresponds to boosts up θ(ξ). Through fig. 15 the characteristics of Pr on tem-

perature distribution is reported. For larger Pr the fluid temperature reduces. It is due to low 

rate of thermal diffusion which associates to larger Pr. It leads to reduction temperature. Fig-

ure 16 indicates influence of Rd on θ(ξ). It is noted that θ(ξ) increases when Rd enhances. It is 

important to remark that in radiation process, extra heat is added nanomaterials and thus tem-

perature rises. Role of g on θ(ξ) is pointed out in fig. 17. Here θ(ξ) rises for g fig. 18 is dis-

played to examine the variation of Nt on f(ξ). It is disclosed that f(ξ) is lower for Nt. Effect of 

Nb on f(ξ) is explored in fig. 19.  Here f(ξ) diminishes for Nt. The curves of concentration 

f(ξ) for Sc are declared in fig. 20. Here it is inspected that grows in Sc decays concentration. 

Concentration is reduced via n, fig. 21. Numerical investigation of  –(Re)1/2Cfx for involved 

variables of interest is executed in tab. 2. Here we pointed out that for increasing θw, n, A, and 

a, the skin friction is increased. Table 3  is prepared to explain features of quantities on Nux. 

It is noticed that Nux enhances for N, Rd, g, Nt, Nb, and θw. 

  

Figure 11. Response of θ(ξ) against λ; α = 0.3,  
We = N = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5,  

Pr = 0.8 = Sc, A = 1.0, n = 0.9 

Figure 12. Response of θ(ξ) against N; α = 0.3, 
We = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5, Pr = 

0.8 = Sc, A = 1.0, λ = 0.1, n = 0.9 
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Figure 13. Response of θ(ξ) against Nt; α = 0.3,  
We = N = Rd = 0.2 = γ = Nt, θw = 1.2, Pr = 0.8 = Sc, 
A = 1.0, λ = 0.1, n = 0.9 

Figure 14. Response of θ(ξ) against Pr; α = 0.3, 
We = N = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5, 
Sc = 0.8, A = 1.0, λ = 0.1, n = 0.9 

  

Figure 15. Response of θ(ξ) against Rd; α = 0.3,  
We = N = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5, Pr = 0.8 = 
Sc, A = 1.0, λ = 0.1, n = 0.9 

Figure 16. Response of θ(ξ) against γ; α = 0.3, 
We = N = Rd = 0.2 = Nt, θw = 1.2, Nb = 0.5,  
Pr = 0.8 = Sc, A = 1.0, λ = 0.1, n = 0.9 

  

Figure 17. Response of ϕ(ξ) against Nt; α = 0.3,  
We = N = Rd = 0.2 = γ, θw = 1.2, Nb = 0.5, Pr = 0.8 = 

= Sc, A = 1.0, λ = 0.1, n = 0.9 

Figure 18. Response of ϕ (ξ) against Nb;  
α = 0.3, We = N = Rd = 0.2 = γ = Nt, θw = 1.2,  

Pr = 0.8 = Sc, A = 1.0, λ = 0.1, n = 0.9 
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Figure 19. Response of ϕ (ξ) against Sc; α = 0.3,  
We = N = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5,  

Pr = 0.8, A = 1.0, λ = 0.1, n = 0.9 

Figure 20. Response of ϕ (ξ) against n; α = 0.3, 
We = N = Rd = 0.2 = γ = Nt, θw = 1.2, Nb = 0.5, 

Pr = 0.8 = Sc, A = 1.0, λ = 0.1 

Table 2. Numerical simulation for surface drag force –(Re)0.5Cfx 

 

Variable (fixed values) Parameters  –(Re)1/2Cfx 

N = We = Rd = 0.2 = g = Nt, a = 0.3,  

A = 1.0 = θw, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc 
n 

0.5 1.43310 

1.0 1.78509 

1.5 0.19674 

N = Rd = 0.2 = g = Nt, a = 0.3, A = 1.0 = θw, λ = 0.1,  

Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
We 

0.0 2.21832 

0.2 1.88636 

0.4 1.71881 

N = We = Rd = 0.2 = g = Nt, A = 1.0 = θw,  

λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
a 

0.0 1.70861 

0.3 1.72056 

0.6 1.73170 

We = Rd = 0.2 = g = Nt, a = 0.3,  

λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
N 

0.0 1.71622 

0.3 1.72107 

0.7 1.72707 

N = We = Rd = 0.2 = g = Nt, a = 0.3, θw = 1.0,  

A = 1.0 = θw, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
A 

0.0 1.60630 

0.5 1.70459 

1.0 1.72056 

N = We = Rd = 0.2 = g = Nt, a = 0.3, A = 1.0, λ = 0.1,  

Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
θw 

0.5 1.23240 

1.0 1.24561 

1.5 1.28657 

N = We = Rd = 0.2 = g , a = 0.3, A = 1.0 = θw, λ = 0.1,  

Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
Nt 

0.1 1.71802 

0.3 1.72356 

0.5 1.73000 

N = We = Rd = 0.2 = g = Nt, a = 0.3,  

A = 1.0 = θw, λ = 0.1, Pr = 0.8 = Sc, n = 0.9 
Nb 

0.0 1.73435 

0.4 1.72138 

0.6 1.71939 

N = We = Rd = 0.2 = Nt, a = 0.3,  

A = 1.0 = θw, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
g 

0.0 1.75820 

0.2 1.72090 

0.4 1.70660 
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Table 3. Numerical data of Nux 

Conclusions 

In the current study we investigated non-linear thermal radiation in mixed convec-

tion flow of Williamson nanoliquid bounded by slendering stretching surface subjected to 

convective and zero mass flux conditions. The following points are as follows. 

 Enhancement in unsteadiness parameter decays velocity. 

 Velocity power index exhibits an opposite effect for velocity and temperature fields. 

 Higher g, λ, and Rd rises the temperature. 

Variable (fixed values) Parameters  

1/2
1

(0)
2

n


 
 

 
 

N = We = Rd = 0.2 = Nt, a = 0.3,  

A = 1.0 = θw, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc 

 

n 

0.5 0.09808 

1.0 0.16103 

1.5 2.06351 

N = Rd = 0.2 = g =Nt, a = 0.3,  

A = 1.0 = θw, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
We 

0.0 0.15243 

0.2 0.15327 

0.4 0.15636 

N = We = Rd = 0.2 = g =Nt,  

A = 1.0 = θw, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
a 

0.0 0.15247 

0.3 0.15225 

0.6 0.15348 

We = Rd = 0.2 = g = Nt, a = 0.3,  

A = 1.0 = θw, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
N 

0.0 0.15295 

0.3 0.15336 

0.7 0.15338 

N = We = Rd = 0.2 = g =Nt, a = 0.3, θw = 1.0, λ = 0.1,  

Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
A 

0.0 0.05466 

0.5 0.12733 

1.0 0.15225 

N = We = Rd = 0.2 = g =Nt, a = 0.3,  

A = 1.0, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
θw 

0.5 0.13423 

1.0 0.17685 

1.5 0.19254 

N = We = Rd = 0.2 = g, a = 0.3,  

A = 1.0 = θw, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
Nt 

0.1 0.15258 

0.3 0.15238 

0.5 0.15222 

N = We = Rd = 0.2 = g =Nt, a = 0.3,  

A = 1.0 = θw, λ = 0.1, Pr = 0.8 = Sc, n = 0.9 
Nb 

0.0 0.15301 

0.4 0.15225 

0.6 0.15242 

N = We = Rd = 0.2 = Nt, a = 0.3,  

A = 1.0 = θw, λ = 0.1, Nb = 0.5, Pr = 0.8 = Sc, n = 0.9 
g 

0.0 0.00000 

0.2 0.15211 

0.4 0.21916 
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 Impact of Nb on f(ξ) is qualitatively revers to that of Nt. 

 Velocity and temperature fields are increasing function of mixed convection parameter λ. 

 Skin friction and heat transfer coefficients are enhanced via unsteadiness variable and ve-

locity power index. 

 The HAM technique may use for different engineering problems and compared with solu-

tion obtained through different techniques [38-45]. 
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