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Transient heat conduction in semi-infinite medium with a power-law time-depen-
dent boundary conditions has been solved by an integral-balance integral meth-
od applying to a semi-derivative approach. Two versions of the integral-balance 
method have been applied: Goodman’s method with a generalized parabolic pro-
file and Zien’s method with exponential (original and modified) profile. 
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Introduction

The present work addresses approximate solutions of transient heat conduction in a 
semi-infinite medium with time-dependent boundary conditions by applying a synergism of 
the semi-derivative version of the diffusion equation and the integral-balance method. Two 
versions of the integral method are at issue : 
–– Goodman’s approach [1, 2] with a parabolic profile (8) [3] and 
–– Zien’s method [4, 5] with exponential profile (9). 

The initial transformation of the governing diffusion (heat conduction) equation into 
a fractional one with a semi-derivative (with respect to the time), allows only one-step integra-
tion procedure to be applied, known as heat balance integral (HBIM) [1, 3] in contrast to the 
double integration method (DIM) [6-10]. This study applies the semi-derivative integral meth-
od (SDIM), proposed in [11], now with time-dependent temperature (power-law) as boundary 
condition.

In order to be correct in formulation of the background of the problem studied, inten-
sively investigated for years [12], we mention some articles related to it such as [13-15] and 
the references therein, since all studies on this problem are hard to be encompassed and this is 
beyond the scope of this work.

Problem formulation

The problem of interest is 1-D transient heat conduction in a semi-infinite medium:
2

2= , ( , ) > 0, > 0, > 0a x t x t
t x
θ θ θ∂ ∂
∂ ∂

(1)
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with time-dependent (power-law) temperature at the interface x = 0 and zero initial condition. 
The approximate solutions are developed by the integral-balance method in two versions, brief-
ly outlined next.

Versions of the integral-balance method: single integration

In general, the integral method applies the concept of finite depth and a front of the 
solution moving with a finite speed, beyond which the medium is undisturbed. In this way the 
unphysical behaviour of the solution (infinite speed) of the parabolic model (1) is corrected.

Goodman’s method 

The integral-balance method of Goodman [1, 2] is based on integration of (1) with 
respect to the spatial co-ordinate x over a fixed distance δ denoting the position (front) of the 
heat penetrating the medium. Hence, this concept divides the medium into two zones: dis-
turbed zone 0 ≤ x ≤ δ(t) with θ(x, t) > 0 and undisturbed zone δ(t) ≤ x < ∞ with θ(x, t) = 0. 
This approach replaces the classical boundary condition far away from the interface x = 0,  
i.e. θ(x → ∞) = 0 by θ(δ) = 0 and (∂θ/∂x)(δ) = 0, which are the well-known Goldman’s boundary 
conditions [1-3]. The integration of eq. (1) with respect to the spatial co-ordinate over a finite 
penetration depth δ and applying the Leibniz rule, yields:

( ) ( )
0

d , d = 0,
d

x t x a t
t x

δ
θθ ∂

−
∂∫ (2)

The left part of eq. (2) is known as Heat-balance integral [1-3]. Then, replacement θ 
by an assumed profile θa expressed in terms of x/δ results in an ODE about δ(t). The principle 
problem emerging in application of the HBI method is the approximation of the gradient of 
right-side of eq. (2) because it should be defined through the assumed profile, which can be 
avoided by double integration approaches [6-10].

Zien’s method

An alternative approach, consistent with both the integral method and the classical 
boundary conditions (relevant to a semi-infinite medium) θ(∞) = 0 and ∂θ/∂x (∞) = 0 has been 
developed by Zien [4, 5]. Integrating both sides of eq. (1) with respect to the space co-ordinate 
from x = 0 to infinity we get:

( )
=00

d , d =
d x

x t x a
t x

θθ
∞

∂ −  ∂ ∫ (3)

Equation (3) is almost the same as eq. (2) of the Goodman’s method with the differ-
ence in the upper terminal of the HBI. The HBIM defined by eq. (3) has been used by Zien 
[4, 5], together with a first-moment equation, to develop solutions with assumed exponential 
profile Ta = Tse–x/δZ which goes to zero for x → ∞ (theoretically correct [12], but practically in-
definable).

Remark on differences and equivalence of both integration approaches 

Both methods are physically equivalent because the Zien’s integration can be presented:

 	 0 0

( )d = ( )d ( )dx x x
δ δ∞

∞

• • + •∫ ∫ ∫
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The second integral in this sum is always zero in accordance with the concept of finite pene-
tration depth. The Goodman’s boundary conditions are more suitable for polynomial or gener-
alized parabolic, see (8), profiles, while the Zien’s conditions allow the assumed exponential 
profile to vanish at the upper bond of the integral. This profile is inapplicable with the Good-
man’s boundary conditions because at x = δZ we get Ta/Ts = 1/e ≠ 0 and dTa/dx(δZ) = –1 δZe ≠ 0.

Semi-derivative integral method: The General approach 

From integer-order diffusion equation a semi-derivative model

Equation (1) can be represented as [11, 16, 17] a product of two operators by means 
of a time-fractional Riemann-Liouville (RL) semi-derivative ∂1/2θ/∂t = Dt

1/2, see eq. (5) [16]:
2 1/2 1/2

2= =a a a
t t x t xx
θ θ θ θ θ θ  ∂ ∂ ∂ ∂ ∂ ∂

− +    ∂ ∂ ∂ ∂ ∂∂   
(4)

( )
( ) ( )1/2

0

, ,01 d= d
1/ 2 d

u x t x
u

t t t u t
θ θθ∂

−
∂ Γ − π∫ (5)

In eq. (4) only the second term has a physical meaning [18, 19]. Hence, the time-frac-
tional equivalent of eq. (1), see also the derivation in [18] and applications in [19]:



( )1/2 1/2

=0

0,
= =

x

t
a a

t x t x
θθ θ θ ∂∂ ∂ ∂

− ⇒ −
∂ ∂ ∂ ∂

(6)

where from eq. (6), we mention: the gradient at x = 0 is proportional to the semi-derivative of 
the surface temperature.

Single-integration method applied to semi-derivative equations 

Now applying the single-integration from eq. (2) and eq. (6), as well from eq. (3) and 
eq. (6), we have:

 
( ) ( )1/2

0

0,d , d =
d

D t
x t x a

t t

δ θ
θ

∂∫ (7)

Equation (7) is the principle SDIM single-integration equation relevant to both Good-
man’s approach and Zien’s method. It is noteworthy, to stress the attention on the physically 
based condition for the front δ(t = 0) since no heat diffusion takes place for t < 0. 

Remark on the semi-derivative approach  
to time-dependent boundary conditions

The semi-derivative approach allows easily to apply different time-dependent bound-
ary conditions Ts(t) and get a semi-derivative (Dt

1/2) of them. To some extent, this simple ap-
proach is equivalent to the DIM [9] as it was commented in Section 5 of [11]. Its main advan-
tage is that it allows the function (temperature) and its gradient to be related at any point, see the 
left eq. (6), through a convolution integral, and especially at the boundary x = 0 by the second 
relation in eq. (6).

Aim

The SDIM, conceived in [11], with f﻿ixed boundary conditions, will be applied with 
time-dependent temperature b0tm/2, m ≥ 0 as a boundary condition through two examples: 
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–– Example 1 with the Goodman version of integral method and generalized parabolic profile 
eq. (8) and

–– Example 2 with Zien’s method with exponential profile (9) (original one and with a modified 
version conceived here).

Generalized parabolic profile satisfying the Goodman’s boundary conditions [3]

= 1
n

a s
xT T
δ

 − 
 

(8)

Zien’s exponential profile [4, 5]
/= e Zx

a sT T δ− (9)

where δZ(t) plays a slightly modified role of a thermal penetration depth.

Solutions

With a boundary condition b0tm/2, m ≥ 0 at x = 0 the exact solution, Section 2 in [12], 
expressed through the error function Φ(x):

( ) /2
0= 1 4 , =

2 2 2
m m

e
m x xT b t i

at at
ξ  Γ + Φ  

   
(10)

The compact description of the last term can be explained:

( ) ( ) ( ) ( ) ( )
2 * 1 *

0

2= e d , = 1 , = d , = 2,3,4...
x

m m

x

x x x i x i mξ ξ ξ ξ
∞

− −Φ Φ −Φ Φ Φ
π ∫ ∫ (11)

As it mentioned in [12], the solution of eq. (10), can be used with tabulated functions  
imΦ(x), tab. 1 of Appendix 2 in [12], which are not always useful to handle in engineering cal-
culations. However, we will use them for comparisons with developed approximate solutions.

Example 1: Goodman approach and a general parabolic profile

With the general parabolic profile (8) and applying the Goodman’s boundary condi-
tions we get a profile:

( ) /2 /2 /2
0 0 00, = = = 1 , s

n
m m m

a s a
xT t T b t T b t b K
δ

−   ⇒ −    
(12)

Now, with the approximate profile defined by eq. (12) and applying the SDIM eq. (7) 
we get:

/2 /2 1/2
0 0

1
d 2=

1d 1
2 2

m m

m

b t a b t
mt n

δ −

  Γ +       +     Γ +    

(13)

The integration of eq. (13) with the initial condition δ(t = 0) = 0 yields:

( )
( ) ( )

( )
( )

12 1 2 1 2= = = , =
11 1

2 2

nG
G m m m mT

m
n n

at G C G G
mm mat

δ
δ

 Γ + + +  ⇒
+ +  Γ + 

 

(14)



Hristov, J.: Semi-Derivative Integral Method to Transient Heat Conduction ... 
THERMAL SCIENCE: Year 2021, Vol. 25, No. 5A, pp. 3557-3568	 3561

Therefore, the approximate solution:

( )
( )

/2 /2
( ) 0 ( ) 0= 1 = 1

2( 1)2 1
1

n

n
m m

a G a G T

m

xT b t T b t M
nn

at G
m

η

 
 

  − ⇒ −   + +   
  +  

(15)

where η = x/(at)1/2 is the Boltzmann similarity variable and MT = (m +1)/Gm 
For m = 0 i.e. fixed temperature as boundary condition we get 

	 0 1/ (1/ 2) 1/ andm TG M= = Γ = π = π

Therefore

	

( )
0

2 1
n
mG

n
atδ

=

+
=

π
i.e. the solution obtained in [11], eq. (12a,b). In thecase the surface flux 

	

( ) ( )

( ) ( ) ( 1)/2
0 1/2

0

0 , is the heat conductivity

is 0
2( 1)

G

a G m T
G

x

q x

T Mq x b t
x n a

λ

λ λ −

=

=

∂ 
= = − =  ∂ + 

Example 2: Zien’s exponential profile 

With the profile (9) and the principle SDIM eq. (7) we have:

( ) ( )
1/2

//2 /2 /2 /2 1/2
0 0 0 01/2

0

1
d d 2e d = =

1d d
2 2

xm m m mzT
ZT

m
Db t x a b t b t ab t

mt tt
δ δ

∞
− −

 Γ + 
 ⇒
 ∂ Γ + 
 

∫ (16)

The integration of the second equation in eq. (16) with the initial condition δ(t = 0) yields:

( ) ( ) ( )

1 1
2 22 2= = = , =

1 11 1
2 2 2 2

Z
Z m m mT

m m

at C G G
m mm mat

δ
δ

   Γ + Γ +   
   ⇒

+ +   Γ + Γ +   
   

(17)

the approximate solution:

( )/2
( ) 0

1= e , = , =
2

Mm ZT
a Z Z

x mT b t M
Gmat

η η− +
(18)

In this case the surface flux is:

	

( ) ( 1)/2
0

=0

( = 0) = =
a z m z

z

x

T Mq x b t
x a

λ λ −
∂    − −   ∂   

Solutions: Plots and comments

Solution obtained are shown in fig. 1. For the sake of simplicity in the case of the 
Goodman method a stipulated exponent n = 2 was used as in the classical approach [1-3]. In 
general, with increase in the value of the parameter m, that is, with increases in the rate of the 
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surface heating, the penetration depth decreases which is obvious from the distribution of the 
temperature profiles. Despite these good and informative results the solutions need optimiza-
tions in order to reduce the errors of approximations. The problem with solution optimizations 
is discussed in the next section. 

Figure 1. Normalized temperature profiles for various non-linear parameters m  
(different ramping programs of surface heating); (a) Goodman’s method and  
parabolic profile with stipulated exponents n = 2 and (b) Zien’s method and  
exponential profile; note: for the sake of simplicity, it is assumed b0 = 1

Optimization of solutions

We have to remember that the obtained approximate solutions satisfy the integral 
relation (7) but not the initial model (1). Therefore, the residual function (19) should not equal 
zero, namely:

2

2= 0a aT T
R a

t x
∂ ∂

− ≠
∂ ∂

(19)

Since the approximate (assumed) profiles satisfy all boundary conditions, we have to 
look how to minimize the error of approximation over the entire thermal penetration depth. In 
this context, we have to mention, that in case of the generalized parabolic profile (8) the profile 
exponent can be varied in order to minimize the mean squared error of approximation. In case 
of the Zien's profile such approach is impossible, since there are no additional parameters al-
lowing optimization. Despite this the present article will do a step ahead modifying this profile 
as it will be demonstrated in section Zien's method (modified).

Goodman’s method 

Assumed generalized parabolic profile with Ts = b0t m/2 as boundary condition yields Ta 
= b0t m/2(1 – x/δ)n. By introduction of the dimensionless variable 0 ≤ z = x/δ ≤ 1 (transforming the 
moving boundary problem into a fixed boundary one) the residual function:

( ) ( ) ( )( )1 21 2 d= 1 1 1 1
2 d

n n n
G

mR z t n z z a n n z
t
δδ δ − −−    − + − − − −    

(20)

The products t−1δ2 = aG2
m and δ(dδ/dt) = 1/2(aG2

m) in eq. (20) are time independent (it is 
easy to check this, so we skip these calculations). Thus, the residual function as a time-indepen-
dent function of the variable z:

( ) ( ) ( )( )1 22 21= 1 1 1 1
2 2

n n n
G m m

mR z G nz G z n n z− −− + − − − − (21)
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Hence, we have the only task to minimize RG with respect to n, thus finding its opti-
mal value. It is obvious from eq. (21) that RG = 0 for z = 1 (x = δ) and the question arising now 
is: what is the situation at z = 0 (at the boundary x = 0)? Thus, setting z = 0 in eq. (21) we get  
RG(z = 0) = m/2(G 2m) – n(n – 1). Setting, RG(z = 0) = 0 we have an equation about n, namely:  
n2 – n – m/2(G 2m) =  0. The solutions of this equation (n > 0) are possible to be obtained an-
alytically (or numerically) for all values of m and examples (corresponding to values of m 
used in the exact solutions of Carslaw and Jaeger [12]) are summarized in tab. 1 (first row). 
We especially added cases when 0 ≤ m ≤ 1 to the situations studied in the preceding sections. 
Therefore, we address the mean squared error of approximation over the interval 0 ≤ x ≤ δ in 
the original problem definition, and in terms of eq. (21) over the interval 0 ≤ z ≤ 1. Precisely, 
we look for minimum of the functional ∫1

0 (RT)2dz with respect to the variable (exponent) n. We 
skip the cumbersome expressions, since the method is described elsewhere [8-10]. The results 
obtained are summarized in tab. 1 (second row). The optimal values of n when 0 ≤ m ≤ 1 are 
summarized in tab. 2.

Table 1. Values of the exponent n defined from the condition  
RG = 0 (first row) and optimal values (second row) for m ≥ 1 

 m ≥ 1  1  2  3  4  5  6
n(z = 0)  1.336  1.618  1.822  1.919  2.158  2.302
n(optimal)  2.827  2.928  2.997  3.008  3.108  3.210

Table 2. Values of the exponent n defined from the condition RG = 0 (first row)  
and optimal values (second row) for 0 ≤ m ≤ 1 

m ≤ 1  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
n(z = 0)  1.047  1.091  1.132  1.170  1.207  1.241  1.247  1.306  1.336
n(optimal)  1.784  1.784  1.784  1.784  1.784  1.784  1.784  1.784  1.784

Zien’s method (modified)

With the Zien’s exponential profile we make a modification by introducing a dimen-
sionless factor β such that T = Tsexp[–β(x/δz)], β > 0; for β = 1 we get the original Zien’s profile. 
In this case the penetration depth is δz/(at)1/2 = Cm(T)β = [2/(m + 1)]Gmβ and therefore, the resid-
ual function can be expressed:

( )
( )22

/2
0 2 2 2

14= e , =
2 2 41

x
m z

Z z z
z m

mm zR b t B B a
Gm

β
δ

β β β
β

β β
δ

−     +     − +       +    
(22)

The first (exponential term of eq. (22) goes to zero as x → ∞ (recall the Zien’s bound-
ary condition) and to finite value when x = δz (x/δz = 1). Therefore, from (22) it follows that 
the optimization should address the second term Bβ z which depends on δβ z and the parameter β, 
taking into account:

2
2 1 2 2

2 2

d d2 4= , = , = 2
d 1 d2 ( 1) ( 1)

z z m
z m z

Ga Gm t aG a
t m tt m m
β β

β β
δ δ

β δ δ β−      
    + + +       

(23)

the last two terms in eq. (23) are time-independent and that β2/δ2
z ≡ 1/t. 

The introduction of the dimensionless variable z = x/δβ z as it was explained in the 
preceding section and bearing in mind that the mean squared error R2

β z ≡ 1/δ4
 z will decay in time 
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with a rate proportional to 1/t2, focuses on minimization of Bβ z with respect to β over the range  
0 ≤ x/δz ≤ 1. The Zien’s method imposes integration from zero to infinity but it is easy to check 
that such integration of squared term of (22) does not yields adequate results. First of all, let us 
see what happens at z = 0. At the boundary z = 0 we get β(z = 0) = (m/2)1/2[Gm/(m + 1)]. This 
condition defines the lower boundary of values of the parameter β, see tab. 3 first row, since the 
general condition is Rβz ≥ 0. Further, following the already demonstrated techniques the optimal 
values of β for m < 1 are summarized in tab. 4.

Table 3. Values of the factor β in the modified Zien’s exponential profile:  
defined from the condition Rβ z = 0 (lower limits) (first row) 
and optimal values (second row) for m ≥ 1 

 m ≥ 1  1  2  3  4  5  6
β(z = 0)  0.313  0.376  0.407  0.425  0.437  0.446
β(optimal)  0.495  0.505  0.515  0.525  0.530  0.535

Table 4. Values of the factor β in the modified Zien’s exponential profile: defined from the 
condition Rβz = 0 (lower limits) (first row) and optimal values (second row) for m ≤ 1 

 m ≤ 1  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
β(z = 0)  0.122  0.168  0.200  0.225  0.246  0.263  0.278  0.291  0.303
β(optimal)  0.392  0.482  0.537  0.582  0.618  0.648  0.668  0.693  0.713

Numerical experiments with optimized profiles  
and comparison exact solutions

Comparisons with the Carlaw and Jaeger  
tabulated solutions [12]

The points correspond to tabulated data of (4) m/2i mΦ[x/2(at)1/2] in tab. 1 of Appendix 
2 in [12] multiplied by Γ(m/2 + 1). Recall, the similarity variable in the approximate solution is  
η = x/(at)1/2, so the factor 1/2 is taken into account when exact and approximate solutions are 
plotted together. It is noteworthy to mention that in order the tabulated values to be compared to 
the approximate solutions, the function of Ta was multiplied by a factor 1/K, where K = (1/k)(4m/2) 
Γ(m/2 + 1). The value of k depends on m in accordance with tab. 1 of Appendix 2 in [12], namely:  
km = 1 = 2, km = 2 = 4, km = 3 = 6, km = 4 = 8, km = 5 = 10, km = 6 = 12. The alternative way is to multiply 
all tabulated data by K and here the first approach was chosen. 

Goodman’s method

The plots in figs. 2(a) and 2(b) are optimized solutions based on the generalized par-
abolic profile (8) and exact solutions, tabulated data from eq. (10), for various values of m. In 
general the optimized solutions work well for small values of η, but the differences between 
them and the exact solutions become significant close to the edge of the penetration depth 
which is inherent problem of the method [3, 15]. We have to take into account that the boundary 
conditions when η ≫ 1 for the exact solution and the Goodman’s method are different.

Zien’s method (modified)

The plots in figs. 3(a) and 3(b) allow to compare of optimized solutions with the mod-
ified (β ≠ 1) (and the original (β = 1) Zien’s profiles (9), and exact solutions (10) for various 
values of m. The optimized solutions demonstrate very good approximations, almost matching 
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Figure 2. Normalized temperature profiles (Goodman’s method and general parabolic 
profile with optimal exponents) for various parameters m (different ramping programs 
of surface heating) compared with tabulated data in [12] (the points); note: for the sake 
of simplicity, it is assumed b0 = 1; the vertical scale depends on the data tabulated in [12]

Figure 3. Normalized temperature profiles (Modified Zien’s profile) for various 
parameters m (different ramping programs of surface heating) compared with tabulated 
data in [12] (the points); note: for the sake of simplicity, it is assumed b0 = 1; the vertical 
scale depends on the data tabulated in [12]

the exact solutions. Detailed numerical experiments in different sections of the approximate 
solutions (i.e. different ranges of variations of η) indicate that the profile works very well at the 
edge of the solution, while for low η the approximation decreases, a behaviour which is just 
opposite to that exhibited by the generalized parabolic profile and the Goodman’s solution. A 
numerical experiment with a value of the exponent β higher than the optimal one for a given m 
shows changes in the approximation behaviour: for low η (the accuracy decreases), while the 
solution approaches the exact one close to the front (see further the inset in the right panel of 
fig. 4(b) and the relevant comments).

Comparisons with the analytical solution of Sahin [14]
The Sahin solutions [14] are based on similarity transforms and expressed through the 

Kummer function [20]. Two cases of theses solutions can be compared for m = 1 and m = 2, namely:
2 2 2

sah, =1 = exp 1 exp erfc exp
4 2 4 2 2 4mT η η η η η η           − + π − π                            

(24)
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2 2

sah, =2
2= 1 2 erfc exp , =

4 2 2 4m
xT
at

η η η η η
π

       + − −                  
(25)

These solutions are compared with the approximate solutions developed here and the 
tabulated data of Carslaw and Jaeger [12], see fig. 5. Unfortunately, they are far away from ei-
ther the exact (tabulated) results and the approximate solutions. It is important to mention that 
in [14] either comparisons with the solution of Carslaw and Jaeger [12] or graphical presen-
tations are completely missing. The plot corresponding to the case m = 1 (square-root surface 
heating) is convex, that is a common curve for non-linear heat conduction equation when the 
diffusivity a is temperature dependent [8-10]; for constant thermal diffusivities the profiles are 
concave in shape [3, 15].

 
Figure 4. Normalized temperature profiles (as in figs. 2 and 3 ): sections corresponding 
to different values of the dimensionless variable η and demonstrating the approximation 
accuracy of the assumed profiles; (a) Goodman’s method and generalized parabolic profile: 
a section close to the solution front (left panel); a section close to the interface x = 0 (η = 0) 
(right panel) and (b) modified Zien’s method:a section close to the interface x = 0 (η = 0) (left 
panel) and a section for large values of η (where the Goodman’s method does not work); 
inset: profiles with optimal parameter β (blue) and with a value of β higher than the optimal 
(the red line closer to the points) 
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Figure 5. Comparison of the approximate solutions (solid lines) with the tabulated data 
from [12] (the points) and the analytical solutions of [14] (dashed lines)

Final comments and main results outline

The semi-derivative based approach applied is a further extension of the method de-
veloped in [11]. The solutions techniques allow reveal some main points, among them. 

yy The use of the semi-derivative model allows the function (temperature) and its gradient to 
be related at any point of the of the medium trough a half-time convolution integral. This 
is especially important at the interface x = 0. In this case only one step integration in the 
integral-balance method is needed. 

yy The Goodman’s approach with a generalized parabolic profile as well as with the Zien’s 
method with exponential profile provides similar results even though both assumed profiles 
require different boundary conditions far away from the interface x = 0. The optimizations of 
the approximate solutions allow comparing with tabulated solutions of Carslaw and Jaeger 
[12] and the results demonstrate the adequacy of the used approaches. In this context, the 
modification of the Zien’s exponential profile (never done before ) allows this profile to be 
more flexible in the solution optimizations. 

yy It is well-known that the Goodman’s method provides good approximation for low values 
of the space variable x, or low values of the similarity variable η = x/(at)1/2, while the big-
gest error occur close to the edge of the solution (the front of penetration depth). In con-
trast, the solutions with modified Zien’s profile provide very good approximations for large  
η = x/(at)1/2. These differences could be attributed to different boundary conditions in both 
methods. 

The semi-derivative method explored in this work is applicable not only to problems 
with ramped power-law temperature boundary condition, but with a heat flux ramping in time 
as well as with other time of functional relations of the boundary condition (not oscillating).
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