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In this paper, a computational method for solving for the 1-D heat conduction tem-
perature field is proposed based on a data-driven approach. The traditional numer-
ical solution requires algebraic processing of the heat conduction differential equa-
tions, and necessitates the use of a complex mathematical derivation process to solve 
for the temperature field. In this paper, a temperature field solution model called 
hidden temperature method is proposed. This model uses an artificial neural network 
to establish the correspondence relationship of the node temperature values during 
the iterative process, so as to obtain the “Data to Data” solution. In this work, one 
example of 1-D steady-state and three examples of 1-D transient state are selected, 
and the calculated values are compared to those obtained by traditional numerical 
methods. The mean-absolute error of the steady-state is only 0.2508, and among the 
three transient cases, the maximum mean-square error is only 2.6875, indicating 
that the model is highly accurate in both steady-state and transient conditions. This 
shows that the hidden temperature method simulation can be applied to the solution 
of the heat conduction temperature field. This study provides a basis for the further 
optimization of the hidden temperature method algorithm.
Key words: hidden temperature method, artificial neural network,  

data-driven, numerical solution, heat conduction 
 

Introduction

In engineering practice, it is often difficult to obtain analytical solutions to thermal 
conduction differential equations due to the limitations of mathematical methods. With the de-
velopment of computer technology, the development of the methods for numerical solution 
of the heat conduction problem has become a long-standing research hotspot. In the past few 
decades, classical numerical approaches such as the finite difference method (FDM) [1], finite 
volume method [2], and boundary element method [3] have been successfully applied to heat 
conduction problems. While the accuracy of these methods has been verified, the solution of the 
discrete equations for heat conduction problems in practical applications still involves a large 
number of complex integral calculations, greatly increasing the difficulty of engineering opera-
tions. This has motivated an intense research effort focused on the exploration and development 
of new numerical solution approaches.

Yang et al. [4] proposed a new approach for boundary-domain integral equation based 
on the use of fundamental solution for isotropic problems, and utilized the radial integration 
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method to convert regional integration into the equivalent boundary integration. In the calcu-
lation process, only the characteristics of the boundary must be considered and the internal 
domain can be ignored. This method was shown to be suitable for addressing the problem 
of transient heat conduction. Chang and Liu [5] introduced virtual time variables and virtual 
damping viscosity coefficients in the integration solution increase the stability of the numerical 
integration of the discrete equations, and obtained good results for both the forward and in-
verse heat conduction problems. These studies have reduced the difficulty of integral operations 
through mathematical methods and have achieved considerable advances.

The development of meshless methods provides another approach for the calculation 
of the heat conduction field. Gu et al. [6] used the singular boundary method for the 3-D heat 
conduction problem with variable thermal conductivity. Cheng and Liew [7] established the 
virtual boundary conditions through the compensation method, and used the meshless repro-
ducing kernel particle method for the 3-D transient heat conduction problem, obtaining good 
results. In addition, many meshless methods such as smooth particle hydrodynamics [8] and 
radial basis function [9] have been shown to be efficient in numerical calculation applications. 
Although the meshless method does not involve the division of discrete domains, it is necessary 
to set the virtual boundary conditions to ensure the accuracy of the results, increasing the diffi-
culty involved in the solution of the equations.

The development of artificial neural networks has also promoted the development of 
numerical solutions for the heat conduction temperature fields. Nabian et al. [10] studied the 
calculation accuracy of the deep learning framework for the equation that contains random vari-
ables. In this process, the thermal conductivity coefficient was defined as a random variable, and 
the obtained results demonstrated that this approach can be used to directly solve the thermal 
conduction differential equations. Deng et al. [11, 12] and Hwang et al. [13] established the heat 
conduction control equation in the calculations for the non-heat conduction problem and the to-
pology diagram of the equivalent connection circuit by the continuous-time analogue Hopfield 
neural network, and then obtained the solution of the control equation. Thus, these studies have 
made good progress in the use of deep learning for numerical calculations of thermal conductivity.

Although the aforementioned methods have achieved significant progress in reducing 
the mathematical derivation requirements and the computational cost, they are still based on the 
approach of obtaining the temperature values by directly solving the physical equation. There-
fore, the accuracy and efficiency of these methods are limited by the design of mathematical 
methods. To overcome this limitation, the problem needs to be considered from a new perspec-
tive, and therefore, in this work we investigated a data-driven technique for obtaining the tem-
perature field. Sudheer et al. [14] pointed out that the core advantage of neural networks is that 
there is no need to describe the complexity of the underlying process in a mathematical form, 
and rather the problem is solved by processing a large amount of data containing the physical 
information, skipping the tedious mathematical solution process. This approach is known as da-
ta-driven technique and has been used for certain applications in the biomedical field [15, 16].

In view of the previously mentioned, this paper proposes a black box model that is 
suitable for solving thermal conduction differential equations based on the data-driven approach:

( ) ( )1,2, ,T i HTM T k→ → (1)

A series of nodes are labeled 1, 2,…, i in a specific order and T(1,2,…, i) represent 
the temperature values of the nodes. The node for which the temperature value is evaluated is 
called Point k. Here hidden temperature method (HTM) is a hidden temperature calculation 
method defined in this article, and the details of its algorithm are described. The model becomes 
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an important interface between the data and physical model through learning. Subsequently, 
the accuracy of the method was verified using four examples of steady-state and transient state 
conditions. The main contributions of this work are: 
–– A computational method for numerical data-driven calculation of heat conduction is pro-

posed.
–– Comparison of the results obtained by the data-driven method to the results obtained by 

standard methods indicates that this method is suitable for modelling heat conduction in 
steady-state and transient conditions.

–– In transient problems, highly accurate results are obtained for both constant temperature 
boundary conditions and heat flow boundary conditions.

Problem and method

Problem set-up

Cylindrical heat conduction phenomena are common in engineering practice. For ex-
ample, in a gasification furnace, molten fly ash particles adhere to the furnace wall to form a 
slag layer. The geometric form of the slag layer can be regarded as a hollow cylinder [17]. In-
vestigation of the temperature distribution of the slag layer can elucidate whether the slag layer 
exists in a solid form, so as to better monitor and treat the effect of the slag layer on the heat 
transfer process of the boiler.

In this paper, we consider the hollow cylinder, as shown in fig. 1. Due to the symme-
try of the structure, it is generally believed that the heat transfer process of the cylinder along 
different radial directions is essentially identical, so that the heat conduction problem of the 
cylinder can be treated as a 1-D problem, and different boundary conditions can be established 
to deal with the steady-state problem and the transient state problem.

 
Figure 1. Geometry of the hollow cylinder model; (a) steady-state heat conduction and  
(b) transient heat conduction

We focus on the correspondence between the node temperatures. To facilitate the ex-
ploration of this problem, unified physical and geometric parameters are used in this work 
[13]. The inner diameter of the hollow cylinder is set to 0.6 m and the outer diameter is 3 m. 
Other thermal parameters are also set to specific values, namely, the thermal conductivity is  
10 W/mK, the constant pressure specific heat capacity is 440 Jk/gK, and the density is 7800 kg/m3.
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Solution methodology

The 1-D heat conduction problems are mainly divided into steady-state problems 
and transient problems. For a steady-state problem, due to the simplicity of the model, the 
results of the numerical difference and direct integration methods are equivalent. Generally, 
the integration method can be used to directly solve for the temperature values. For transient 
problems, the FDM can generally be used for the calculation of the temperature values. For 
a very small difference step, the results obtained by the FDM calculations can be considered 
to be completely equivalent to the real solution [18]. In this work, the integration operation 

results are selected as the database for steady-
state calculations, and the FDM results are 
selected as the database for transient calcula-
tions. These two groups of datasets are used 
to build two HTM models. Finally, the bound-
ary conditions that were not included in the 
database are selected to compare the results of 
the HTM calculations to the results obtained 
by the traditional methods.

The process used to establish the HTM 
model is illustrated in fig. 2.

In the solution of the heat conduction temperature field, the boundary conditions must 
be determined first, and the control equation of the temperature field can be expressed accord-
ing to the boundary conditions. In the 1-D steady-state heat conduction problem, the governing 
equation can be directly solved by integration. For other cases, the temperature field is discret-
ized, and then the control equation is converted into a difference equation using the FDM, and 
the temperature values of the nodes are iteratively calculated to obtain the temperature field. 
This process is the Step 1 in fig. 2 and it is also the traditional numerical solution used to solve 
for the temperature field. The transformation of the governing equations into difference equa-
tions is a classic problem in numerical analysis [19], and will not be described here.

Step 2 is to merge the data values of the multiple sets of the temperature fields to 
establish a database. After reasonable classification and processing of the data, the data are 
imported into an artificial neural network model for training, and a black box model with com-
puting power is obtained. Then in Step 3, the black box model is used to perform iterative calcu-
lations, and if the obtained temperature field data are consistent with the true values, the model 

is established successfully. This black box model is defined 
as HTM, which is consistent with the data-to-data approach. 
Therefore, establishing the correspondence relationship of 
the node temperature values is the core of HTM.

For the 1-D steady-state heat conduction problem, the 
iterative calculation only involves propagation in the spatial 
direction, as shown in fig. 3. The nodes with a given tempera-
ture value are represented in gray, including the temperature 
value of the boundary node and the initial temperature value 
of the central node. The red – 1, yellow – 2, and green – 3 
nodes represent the nodes for which the temperature must be 
calculated during the iterative process. The blue – 4 nodes 
represent the nodes in the final temperature field after the 
iterative process. It is important to note that fig. 3 is only an 

Figure 2. Process used to establish the HTM

Figure 3. The 1-D steady-state 
heat conduction node
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illustration of the iterative process of the steady-state heat conduction temperature field, and in 
actual calculations, the number of nodes will be much greater than that shown in the illustration.

In the integration calculation of the 1-D steady-state problem, the temperature value 
of each node is affected by the temperature values of the two neighbor nodes. Inspired by the 
aforementioned ideas, we set the temperature of 2 nodes as input, and the temperature of 1 node 
as output in the calculation of steady-state heat conduction. That is, there is a 2 to 1 relationship 
between nodes.

Figure 4 describes the updating of the nodes during iteration. In the first iteration, the 
temperatures of the two gray nodes are used to calculate the temperature of the red – 1 node 
between them, as shown in fig. 4(a). In the calculation of the temperature of the yellow – 2 
node, the temperature value of the node above the yellow node has become a new temperature 
value, that is, the temperature value of the yellow node must be obtained using the tempera-
ture value of the red node and the temperature value of the gray node, as shown in fig. 4(b). 
Similarly, for the calculation of the temperature of the green – 3 node, the temperature value 
of the yellow node must be used, as shown in fig. 4(c). Along the heat transfer direction, after 
all of the nodes have been updated, one iteration of the process ends and the next iteration are 
performed, as shown in fig. 4(d). When the temperature of the same node changes by less than 
10–5, it is generally considered that the iterative process is completed and the final temperature 
field has been obtained.

 
Figure 4. Schematic diagram of the iterative process used to obtain the temperature field

Defining Ti,j to represent the temperature value of the ith point at the jth iteration, node 
correspondence can be expressed:

1, 1, 1 ,i j i j i jT T T− + −+ → (2)

For the 1-D transient heat conduction problem, the 
iterative calculation process involves both spatial and tem-
poral propagation, as shown in fig. 5. The vertical axis 
represents the propagation in the spatial direction, and the 
horizontal axis represents the propagation in the time direc-
tion. In the FDM calculations, the temperature value of a 
node is calculated from the temperature values of the three 
nodes at the previous time step, namely the node itself and 
the two neighbor nodes. 

Here, node correspondence can be expressed:	

1, , 1, , 1i j i j i j i jT T T T− + ++ + → (3)
Figure 5. The 1-D transient 
thermal conduction node 
correspondence 
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The actual correspondence is not a direct addition of the temperature of the three 
nodes, and eq. (3) only symbolically represents the 3 to 1 node relationship. The iterative pro-
cess is the same as that used for the steady-state case, and is not described again.

It is assumed that the data-data calculation 
effect can be achieved through the corresponding 
relationship of the node temperature values. While 
we refer to the FDM to construct the node rela-
tionship, in fact, the correspondence relationship 
of the nodes does not need to be mathematically 
derived. We take the data sets in the steady-state 
and transient problems, respectively, and pre-pro-
cess the data to make them correspond to the cor-
respondence relationship. The temperature data of 
the surrounding points before the iteration are tak-
en as the input, and the temperature values obtained 
by the iterative calculation are taken as the output. 
We select the back propagation neural network as 
the test network to construct the neural network. 

Figure 6 shows a schematic diagram of the neural network of the 1-D transient model. The 1-D 
steady-state neural network only modifies the input from 3 node values to 2 node values.

The neuron model includes the input layer, the output layer and the hidden layer [20], 
where the hidden layer can be a single layer or multiple layers. For a single neuron, we assume 
the input as x1, x2,…, xi,…, xn, the corresponding neuron connection weights as ω1, ω2,…, ωi,…, ωn, 
the threshold for neurons as θ, and then the output value can be expressed:

1

n
i ii

y f w x θ
=

 = − 
 ∑ (4)

As mentioned previously, the HTM model can be obtained by taking the temperature 
values to be iterated as the node output and the initial temperature values before the iteration 
as the node input and substituting the neural network for training. The advantage of the HTM 
model is that it avoids complex integration operations, greatly reduces the difficulty of deriva-
tion in numerical calculations, and more efficiently exploits the advantages of the computation-
al approach.

Cases and results

In this paper, two sets of neural networks are built to solve the four typical cases of 
steady-state and transient problems.

Steady-state problem

Case 1 is used to explore the 1-D steady-state heat conduction problem, as shown in 
the fig. 1(a), and the most commonly used fixed wall temperature condition is selected as the 
boundary condition.

First, the cylindrical surface is meshed by setting up a grid node at the intervals of  
0.1 m for a total of 25 nodes in 1-D. For the steady-state heat conduction problem of a 1-D 
cylinder, the accurate distribution of the temperature field can be obtained through integral 
calculation. Given 100 sets of fixed wall temperature boundary conditions, the corresponding 
temperature fields are obtained through integral solution that is then used as the initial database 
for neural network learning.

Figure 6. Schematic diagram of the neural 
network structure
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As mentioned previously, the nodes have a 2-to-1 correspondence during 1-D steady-
state heat conduction. We process the data in the database according to the correspondence 
relationship to obtain the training set. Both the size of the data set and the number of the nodes 
in the hidden layer of the neural network will affect the final calculation result, and currently no 
mature theoretical guidance for the selection of these two parameters is available. This paper 
determines the final parameter values by changing these two parameters to compare the test 
set error during the training process. The error of the neural network is generally expressed 
by mean-square error (MSE). The R value measures the correlation between the expected data 
and the actual data. A correlation of 1 indicates that the two are completely consistent, and a 
correlation of 0 indicates that the data is completely random [21]: 

( )2

1

ˆ1 m

i i
i

MSE y y
m

=

= −∑ (5)

The obtained error values are shown in tab. 1.

Table 1. The MSE of different neural networks in steady-state  
heat conduction

 Number of nodes

Amount of data
10 20 30

1000 0.132 0.102 0.0852
1500 0.0904 0.0725 0.0474
2000 0.0919 0.0648 0.0457
2300 0.0794 0.0599 0.0684

Although the error value of each training is not the same for the same data set and the 
same number of nodes, it is generally within a certain range. However, in this example, the chang-
es in the amount of data and the number of nodes have no significant effect on the error. The neural 
network with 20 hidden layer nodes and 2300 sets got the best training result of tab. 1.

The MSE and R values of the neural network are shown in tab. 2. The error values of the 
training set and the test set are on the order of 10–2. A schematic diagram of the R value is shown 
in fig. 7. It is observed that the accuracy of the neural network meets the calculation requirements.

Table 2. The 1-D steady-state model neural network training error
Samples MSE R

Training 1610 0.0760 9.999*10-1
Validation 345 0.0570 9.999*10-1
Testing 345 0.0599 9.999*10-1

Case 1. Constant temperature on both sides: In this case, the temperature of the in-
ner wall surface is 1185 K and the temperature of the outer wall surface is 100 K (this set of 
operating conditions does not appear in the learning data set). The neural network is used for 
the calculation of the temperature field and the results are compared with the results of integral 
calculations as shown in fig. 8.

Here, the red –1 dots represent the HTM calculation results, and the black – 2 lines 
describe the integral calculation results. It is clear that the two sets of results are in excellent 
agreement.



Li, K., et al.: A Computational Method to Solve for the Heat Conduction ... 
240	 THERMAL SCIENCE: Year 2022, Vol. 26, No. 1A, pp. 233-246

We measure the calculation error by the mean-absolute error (MAE):

( )HTM int
1MAE t t
n

= −∑ (6)

For this case we obtain MAE = 0.2508. The calculation error indicates that the calculation 
results are highly accurate.

Figure 7. The 1-D steady-state model neural network 

Figure 8. The 1-D 
steady-state model 
calculation results
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Transient thermal problems

In Cases 2-4 the problem of 1-D transient heat conduction is explored by changing the 
heat flow, as shown in the fig. 1(b). In engineering practice, regardless of whether a combustion 
reaction or a flow of hot fluid occurs inside the cylinder, heat is exchanged on the inner wall 
surface. In Cases 2-4 the inner wall surface is selected as the heat flow wall surface, and the out-
er wall surface is the insulated wall surface. Then, the boundary conditions can be expressed:

( ) ( )
,

|r a
T r t

q t
t

λ =
∂

= −
∂

(7)

( ),
| 0r b

T r t
t

λ =
∂

=
∂

(8)

Prior to building the neural network, 20 different heat flow conditions were select-
ed, and the temperature field under transient conditions was solved using FDM for these 20 
conditions. The obtained data were processed into a 3 to 1 node temperature correspondence 
relationship, and were imported into the neural network for training. The determination of the 
number of hidden layer nodes is consistent with the previous method. The error values are 
shown in tab. 3.

Table 3. The MSE of different neural networks in transient heat conduction
 Number of nodes

Amount of data
10 15 20 25 30

2000 4.467⋅10–5 3.275⋅10–5 1.114⋅10–5 4.803⋅10–5 3.691⋅10–5

4000 1.571⋅10–5 1.220⋅10–5 5.982⋅10–6 4.074⋅10–6 3.596⋅10–6

6000 2.417⋅10–5 1.725⋅10–5 4.322⋅10–6 3.061⋅10–6 2.695⋅10–6

8000 1.661⋅10–5 9.897⋅10–5 8.651⋅10–6 4.415⋅10–6 2.967⋅10–6

10.000 1.861⋅10–5 1.642⋅10–5 4.208⋅10–6 2.488⋅10–6 1.266⋅10–7

An examination of the data presented in tab. 3 shows that the error gradually decreases 
with increasing number of layers and nodes. Considering the computational cost and the calcula-
tion requirements comprehensively, for the three cases we select 10000 groups of nodes as the ini-
tial database, and the number of hidden layer nodes of the neural network is set to 30. The training 
error values of the neural network are shown in tab. 4 and it is observed that the MSE values are 
on the order of 10–7. The schematic diagram of the R values is shown in fig. 9, demonstrating that 
the training is effective and meets the calculation requirements of this example.

Table 4. The 1-D transient model neural network training error
Samples MSE R

Training 7000 1.460⋅10–6 9.999⋅10–1

Validation 1500 1.543⋅10–6 9.999⋅10–1

Testing 1500 1.486⋅10–6 9.999⋅10–1

In the temperature field calculations, many kinds of heat flow conditions such as the 
change of the heat flow with a triangular cross-section may be encountered and the heat flow 
changes in a stepwise manner. In this work, three cases are selected, including a variety of heat 
flow conditions (the heat flow conditions included in the example are not in the training set), and 
the results obtained by the neural network and FDM are compared. In the three sets of calcu-
lation examples, the iteration time step is 0.01 s and 600 steps are used in the iterative process.
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Case 2. The heat flow conditions are given:

( )
0,0 1
1,1 3

2 0.2,3 6
15

t
q t t

t t


 < ≤


= < ≤

 − < ≤


(9)

The heat flow function is shown in fig. 10(a). The heat flow contains a step and a trian-
gular profile change. The calculation results obtained by the neural network and FDM methods 
are compared in fig. 10(b).

Figure 9. The 1-D transient problem training R value 
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Case 3. The heat flow conditions are given:	

( )

0.3,0.0 1.0
0.7 0.4,1.0 2.0

0.5 2,2.0 3.0
0.5,3.0 3.3

20.5 1 sin ,3.3 5.8
3

0.3,5.8 6.0

t
t t

t t
tq t

t t

t

< ≤
 − < ≤
 − + < ≤


< ≤= 
  π  + < ≤     


< ≤

(10)

Figure 10. Heat flow and calculation results of Case 2 

The heat flow function is shown in fig. 11(a). The change in the heat flow first passes 
through a triangular cross-section and then a sinusoidal curve. The results obtained by the neu-
ral network and FDM are compared in fig. 11(b).

Figure 11. Heat flow and calculation results of Case 3 
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Case 4. The heat flow conditions are given:	

( )
( )

4sin ,0 3
5

40.5sin 0.5sin 8 ,3 6
5

t t
q t

t t

 π  < ≤  
  = 

π  + π < ≤   

(11)

The heat flow function is illustrated in fig. 12(a). The heat flow curve contains two sets 
of sinusoids with different frequencies. The results obtained by the neural network and FDM 
are compared in fig. 12(b).

 
Figure 12. Heat flow and calculation results of Case 4 

In the comparison of the three cases, the horizontal axis represents the calculation 
step, and the vertical axis represents the temperature value. The changes of the temperature 
values for the nodes located at r = 1.2 m, r = 1.8 m, and r = 2.4 m are plotted for 600 steps. In 
figs. 10(b), 11(b), and 12(b), the FDM calculation results are shown in blue, and the HTM cal-
culation results are represented by black lines. An examination of these figures shows that the 
two sets of results are in excellent agreement and no obvious error is observed at the position 
where the heat flow was abrupt.

The calculated error values for the three cases are shown in tab. 5. An examination 
of these values shows that the maximum error value of the three sets of results is only 2.6875, 
demonstrating that the HTM calculation results are highly consistent with the FDM results. 
Thus, it can be concluded that HTM can solve the 1-D transient heat conduction problem well.

Table 5. The 1-D transient thermal calculation error
Case 2 Case 3 Case 4

MSE 2.6875 0.5184 1.3875

Conclusions

To summarize, this paper proposes a computational method to solve for the heat con-
duction temperature field. The HTM is constructed by the relationship between the node tem-
perature values, and then is used to calculate the temperature field. Based on the cylindrical heat 
conduction model, four examples of the calculation of the 1-D heat conduction problem prove 
the accuracy of the method.
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In the 1-D steady-state problem, a 2 to 1 node correspondence is established, and typ-
ical constant temperature boundary conditions are selected to reconstruct the temperature field. 
Compared to the results of integral calculation, the MAE of the steady-state is only 0.2508, 
confirming the high accuracy of the HTM calculation results.

For the 1-D transient problem, we established a 3 to 1 node correspondence and se-
lected 3 sets of heat flow changes. The maximum MSE error of the three cases is only 2.6875, 
demonstrating that the HTM model is also accurate for the calculation of the temperature field 
in the transient problem involving time terms.

It should be noted that in the steady-state and transient problems, the correspondence 
between nodes is not the same, so that two HTM models must be established. However, in the 
same node correspondence, HTM shows a strong universality, and shows good performance 
characteristics under different boundary conditions of the 1-D transient problem.

The results obtained in this work show that HTM can be used for the iterative calcu-
lation of 1-D heat conduction, and acts as a highly accurate black box model in the calculation 
of heat transfer problems.

As mentioned previously, the learning process of the neural network does not require 
rigorous mathematical derivation of the difference equation. Rather, it only requires the re-inte-
gration of the data with the existing temperature field to realize the data-data approach. The ad-
vantages of HTM will gradually emerge with increasing number of dimensions or increasingly 
complexity of the calculation model. In future work, we will continue to explore the application 
of HTM models in complex temperature fields.
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