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In this paper, Wong-Zakai approximation methods are presented for some stochas-
tic differential equations in engineering sciences. Wong-Zakai approximate solu-
tions of the equations are analyzed and the numerical results are compared with 
results from popular approximation schemes for stochastic differential equations 
such as Euler-Maruyama and Milstein methods. Several differential equations 
from engineering problems containing stochastic noise are investigated as numer-
ical examples. Results show that Wong-Zakai method is a reliable tool for studying 
stochastic differential equations and can be used as an alternative for the known 
approximation techniques for stochastic models.
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Introduction

Following the early studies on Brownian motion, including the renowned study of Al-
bert Einstein in 1905, stochastic differential equations (SDE) have been used for modelling nu-
merous events with fluctuating behavior. The state of the art of stochastic modelling stretches 
from financial applications and mathematical psychology to biological investigations and beyond. 
The use of stochastic noise in conjunction with deterministic differential equation systems as 
well as stochastic system models are popular applications in the field of epidemiology. Bacterial 
resistance [1], small cell lung cancer [2], and phytoplankton modelling [3] are only some of the 
stochastic modelling studies from natural sciences. In addition, there is also a vast literature of 
stochastic analysis in various branches of engineering. Many systems involved in energy, electri-
cal, meteorological and marine engineering are known to be investigated via stochastic models.

In this study, SDE used in electric circuit analysis and solar irradiance predictions 
will be used as examples of such equations in engineering sciences and other applications 
[4-6]. Wong-Zakai approximations will be used to investigate these examples to present the 
advantages of Wong-Zakai schemes for analyzing stochastic systems in engineering problems. 
Although there are some probabilistic analyses as well, a considerable amount of the stochastic 
modelling studies involves the use of approximation methods. Euler-Maruyama and Milstein 
schemes are two of the most basic and popular tools used in the literature [7]. Similarly, various 
other deterministic schemes can be adapted to the stochastic mainframe through Ito's stochastic 
integration (along with other stochastic integrals) and the tools of stochastic calculus based 
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on these operations, such as the stochastic Runge-Kutta method [8]. Stochastic finite element 
method [9] and random variable transformation method [10] are some of the other methods 
used in the literature. Models consisting of differential equations which are highly non-linear, 
coupled and of higher dimensions constitute a problem for the exact analysis of the solutions. 
Hence, a more accurate and/or efficient approximation method provides an alternative powerful 
tool for the analysis of such systems.

The leading studies of Wong and Zakai in 1965 [11, 12] presented an approximation 
to SDE with ODE. Wong-Zakai principle is based on the idea that the approximations of the 
noise in the SDE can be obtained by piecewise linear approximations of the Brownian motion 
[13]. Using this principle with Stratonovich stochastic integration, the common methods for 
ODE can be used for the investigation of stochastic models [14, 15]. Some of the current ap-
plications of the Wong-Zakai approximation in the literature are for analyzing SDE of higher 
dimension [16], SDE with reflecting boundary condition [17], SDE driven by martingales [18] 
and stochastic partial differential equations [19].

Considering that the use of noise terms for modelling physical systems is a popu-
lar application in mathematical modelling, we will compare Wong-Zakai approximate results 
with current popular stochastic schemes such as Euler-Maruyama, Milstein and Runge-Kutta. 
Methods for the solutions of ODE will be used for approximating the noise terms appearing in 
some engineering problems which will be used as examples to demonstrate the application of 
Wong-Zakai approximations in electrical engineering, energy engineering and similar fields. 
Our research suggests that Wong-Zakai approximation has some advantages in comparison 
these methods and can be very useful for analyzing SDE that arise in engineering problems as 
well as other branches of science. 

Wong-Zakai approximation and methodology

In this section, Wong-Zakai approximation method is presented with the deterministic 
numerical approximation methods that will be used for analyzing SDE and the other stochastic 
methods that will be used for comparison.

Wong-Zakai Scheme

Wong-Zakai theorem is based on the approximation of SDE using ODE. Stratonovich 
integration plays a key point in this method, since unlike Ito stochastic integration, it abides the 
rules of ordinary calculus. A Stratonovich stochastic differential equation can be given:

( ) ( )d , d , dt t t tX a t X t b t X W= +  (1)
with an initial condition X0 = x0 for x0 ∈ R. Note that we denote the stochastic process X(t, ω) by 
Xt. Here, the drift term a(t, Xt) is sometimes denoted as a_(t, Xt) to distinguish between Ito and 
Stratonovich stochastic integrals with the relation:

( ) ( ) ( ) ( )1, , , ,
2

a t x a t x b t x b t x
x
∂

= −
∂

(2)

As eq. (2) suggests, if the diffusion term b(t, Xt) is independent of Xt, i. e. the SDE 
contains additive noise, Ito and Stratonovich SDE have the same drift coefficients. The interval 
[0, T] is discretized as 0 = t0 < t1 < t2 <... < tk–1 < tk = T to approximate the solution of (1) on these 
points. The method aims to find the numerical approximation X^

tj of the solution X 
tj for each in-

terval [tj, tj+1], j = 0, 1,..., k – 1 with the initial approximation X^
0 = X0 = x0. The X^

tj+1 is obtained 
by using the following initial value problem [15]:
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( ) ( )d 1, ˆ
d

ˆ
ˆ,t

j
j

X
a t X t b t X t W

t
   = ∆   ∆

+ (3)

for each sub-interval with X^(tj) = X^
j. Here Δj = tj+1 – tj and ΔWj = Wtj+1 – Wtj are the discrete ap-

proximations of dt and dWt. Once Δj and ΔWj are defined, schemes for ODE can be used with 
eq. (3) to obtain approximations of SDE on [0, T]. The deterministic multistep methods that 
will be used along with eq. (3) are 
Adams-Bashforth method and the 
predictor-corrector method with 
Adams-Bashforth as the predictor 
and Adams-Moulton as the cor-
rector pair [20].

An illustration of how the 
deterministic schemes and Wong-
Zakai are used together can be 
seen for a realization of an arbi-
trary stochastic process in the fig-
ure above, fig. 1.

Stochastic schemes used for comparison

Several stochastic approximation methods have been used to validate the results ob-
tained by Wong-Zakai method. The stochastic Runge-Kutta method is defined by using the Ito 
SDE:

( ) ( )d , d , dt t t tX a t X t b t X W= + (4)
which can be turned into a Stratonovich SDE through eq. (2). The stochastic analogue of the 
fourth order Runge-Kutta scheme is given:

] [( )1 0 1 2 3 0 1 2 3
1 2 2 2 2
6n nt t nX X F F F F h G G G G W

−
 = + + + + + + + + ∆  (5)

where h = tn – tn–1 and

( )1 10 1 1 1 0 0
1 1 1, , ,
2 2 2n nn t n t nF a t X F a t h X F h G W

− −− −
 = = + + +


∆ 


( )1 12 1 1 1 3 2 2
1 1 1, , ,
2 2 2n nn t n n t nF a t h X F h G W F a t X F h G W

− −−
 = + + + = + + 


∆


∆

(6)

and Gi, i = ( 1, 4)¯¯¯ are similarly obtained by the evaluation of the diffusion coefficient at the same 
point [8]. Note that here, a(t, Xt) and b(t, Xt) are the drift and diffusion coefficients of the Stra-
tonovich SDE. The local equivalence between the stochastic fourth order Runge-Kutta method 
and the Milstein scheme in the mean square sense can be found in the literature [8]. The Mil-
stein approximate solution Xt of the Ito SDE (4) on the interval [t0, T], which is an order 1.0 
strong Taylor scheme:

( )
1

21
2n nt t n n n nX X a b W bb W

+
 ′= + ∆ + ∆ + ∆ −∆  

(7)

for the discretized time interval t0 = τ0 < τ1 <... < τn < τN = T with n = 0, 1, 2,..., N – 1 using the 
initial value X ¯t0 = X0. Similarly for eq. (7), Δn = τn+1 – τn and ΔWn = Wτn+1 – Wτn. The strong order 

Deterministic scheme

on each sub-interval
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Figure 1. Wong Zakai approximation method for an arbitrary 
stochastic process
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1.0 of Milstein scheme is an improvement of the stochastic Euler scheme which is of strong 
order 0.5 [21]. Euler-Maruyama scheme is given for the discretized time interval and the initial 
value of the Ito SDE (4):

1n nt t n nX X a b W
+
= + ∆ + ∆ (8)

where X ¯t is the approximate solution of the SDE. Both Euler and Milstein schemes have weak 
order 1.0 and for SDE with additive noise (7) and (8) are identical [21]. The explicit order 1.0 
strong scheme, which is also called as Runge-Kutta in some resources, proposed by Platen is 
also used for comparison [7]:

( ) ( )21
1 ,

2n n n n n n n n
n

Y Y a b W b b Wτ+
  = + ∆ + ∆ + ϒ − ∆ −∆  ∆   (9)

for  𝛶   ̄n = Yn + aΔn + b(Δn)1/2 where Y is the approximate solution the Ito SDE. 

Applications

The SDE used in modelling engineering problems are given as numerical examples to 
compare the efficiency of the method with other approximation methods. Note that to obtain the 
approximate expected values for the approximation methods, the mean of N simulated sample 
paths have been used:

 
( )

1

N N
t

t
i

X
E X

N=
∑

where X Nt  denotes the Nth sample path obtained for the method. 
Problem 1. (A reducible SDE with non-linear multiplicative noise); consider the fol-

lowing SDE:

( ) ( ) ( )2 3 2d sinh cosh d cosh dt t t t tX X X t X Wβ β= + (10)

with the initial condition X0 = 1/2. It is known that the exact solution of eq. (10) for β = 1/10 is 
obtained as [7]:

1 1arctanh tanh
2 10t tX W

  = +  
  

(11)

The approximate solution of eq. (10) 
obtained with Euler, Miltein, and Wong-Zakai 
schemes are shown in the fig. 2. The Ito SDE (10)  
can be denoted as a Stratonovich SDE through 
the transformation (2):

( )2d cosh dt t tX X Wβ=  (12)
which will be used for Wong-Zakai method. 

The results from the MATLAB-SDE 
algorithm, shown as SDE in the table, Eul-

er-Maruyama scheme (8), Milstein scheme (7), Explicit order 1.0 Runge-Kutta (9), and sto-
chastic fourth order Runge-Kutta scheme (5) are compared with Wong-Zakai scheme (3) to-
gether with deterministic Adams-Bashforth scheme and Wong-Zakai scheme (3) together with 
deterministic predictor-corrector scheme in the tab. 1. The approximate values have been ob-
tained for a discretized sub-interval length Δn = 0.1 for the stochastic methods and h = 0.1 for 

Figure 2. Approximate solutions of eq. (10)
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the deterministic methods used with Wong-Zakai method, tab. 1. The 106 realizations are used 
for the simulations of the expected values and we get the following results. The Δn = 0.01 was 
used to obtain the results for Euler and Milstein methods to obtain the same number of total 
evaluation points with both Wong-Zakai methods. 

Table 1. Comparison of results for eq. (10) using 106 simulations

 t  Expected value, E(Xt)  SDE 

 Stochastic schemes  Wong-Zakai scheme with  

 Euler- 
-Maruyama  Milstein  Explicit  Runge- 

Kutta IV 
 Adams- 

-Bashforth 
 Predictor- 
-Corrector  

0.0  0.5000  0.5000  0.5000  0.5000  0.5000  0.5000  0.5000 
0.1  0.5007  0.5007  0.5007  0.5008  0.5008  0.5007  0.5009 
0.2  0.5015  0.5015  0.5017  0.5015  0.5016  0.5015  0.5017 
0.3  0.5023  0.5022  0.5023  0.5023  0.5024  0.5023  0.5025 
0.4  0.5030  0.5029  0.5031  0.5032  0.5031  0.5031  0.5031 
0.5  0.5038  0.5036  0.5039  0.5040  0.5039  0.5039  0.5042 
0.6  0.5046  0.5045  0.5046  0.5048  0.5047  0.5047  0.5050 
0.7  0.5055  0.5053  0.5056  0.5056  0.5055  0.5055  0.5059 
0.8  0.5063  0.5062  0.5064  0.5065  0.5064  0.5063  0.5066 
0.9  0.5072  0.5069  0.5071  0.5073  0.5072  0.5072  0.5074 
1.0  0.5080  0.5078  0.5079  0.5082  0.5080  0.5082  0.5082 

 If relative error percentage (also known as percent error and denoted by δ) of the meth-
ods are compared (at t = 1.0 relative to the exact solution), the percentages of the absolute errors 
relative to the exact value are found:

 
Euler Milstein

0.5080 0.5082 0.5078 0.5082
100 0.04%, 100 0.08%

0.5082 0.5082
δ δ

− −
= × = × 

 
Explicit WZ-AB

0.5079 0.5082 0.5080 0.5082
100 0.06%, 100 0.04%

0.5082 0.5082
δ δ

− −
= × = × 

 

 
WZ-PC

0.5082 0.5082
100 0.00%

0.5082
δ

−
= × 

It can be seen that other deterministic schemes such as Runge-Kutta can also be used 
with Wong-Zakai scheme and similar relative errors are obtained from the simulations. Wong-
Zakai scheme can be seen to produce similar results and errors compared to the popular sto-
chastic approximation methods. 

Problem 2. (A solar irradiation problem) Solar radiation is one of the leading clean 
energy sources and modelling studies for efficient harvesting to produce clean power has been 
widely studied in the last decades [22]. There are various numerical weather prediction (NWP) 
models and simulation systems to predict the solar irradiation within other meteorological pa-
rameters to increase productivity. One of the methods for the prediction of solar radiation is the 
use of SDE. The SDE are indeed a useful tool for modelling the volatility in power production 
through changes in solar radiation levels due to the non-stable nature of atmospheric conditions 
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such as dust, water vapor, air pollution and, etc. [22]. A SDE with additive noise has been given 
by Iversen et al. for solar irradiance prediction within a model that tracks the NWP [5]. The 
equation is given:

( )d d dt x t x t x tX n X t Wθ µ σ= − + (13)

where Xt is the actual solar irradiance at time t. The parameters are nt respresents the predicted 
radiance at t, µx is a scaling parameter for nt, θx determines the rate of model reversion predicted 
irradiance level and σx is the additive noise rate. The original model tracks the NWP provided 
by the Danish Meteorological Institute. Our application uses solar irradiance prediction data 
obtained for Rize (Turkey) city center (41.0284 N, 40.5157 E) from Copernicus Atmosphere 
Monitoring Service. The data has been generated using Copernicus Atmosphere Monitoring 
Service Information 2018, [23].

Equation (13) is an Ito SDE with additive noise and hence, its Stratonovich SDE ver-
sion is obtained:

( )d d dt x t x t x tX n X t Wθ µ σ= − +  (14)
Using Wong-Zakai approximation with Adams Bashforth method and predictor-cor-

rector method with Adams-Moulton as the corrector pair for eq. (14), we obtain the following 
results, tab. 2. The time variable t is measured in hours for this problem and a time interval of 
[0, 48] has been investigated modelling two days of solar irradiance levels in Rize city center on 

August 15-16, 2018. A discretized sub-interval 
length Δn = 1 was used for the stochastic meth-
ods and h = 0.1 was used for the deterministic 
methods used with Wong-Zakai method within 
each hourly interval, tab. 2. An extra simulation 
of Euler method with Δn = 0.01 has also been 
added for comparison. All of the methods have 
been simulated for 105 times. The solution curves 
have been shown in the fig. 3. The initial condi-
tion for the analysis has been used as X0 = 0.  
Global irradiation on horizontal plane data has 
been referred in the simulations. Results for the 
second day are also given in the tab. 3.

Since there is no exact solution for the SDE the errors cannot be accurately compared. 
However, if the most basic and widely used method – Euler method (with Δn = 0.01) – is used 
for comparison, we see the relative error percentages:

 
Euler Milstein

0.0057 0.0062 0.0050 0.0062
100 8.06%, 100 19.35%

0.0062 0.0062
δ δ

− −
= × = × 

 
RK4 Explicit

0.0064 0.0062 0.0055 0.0062
100 3.23%, 100 11.29%

0.0062 0.0062
δ δ

− −
= × = × 

 
WZ-AB WZ-PC

0.0064 0.0062 0.0062 0.0062
100 3.23%, 100 0.00%

0.0062 0.0062
δ δ

− −
= × = × 

Figure 3. Approximate solutions of eq. (14)
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Table 2. Comparison of results for eq. (14) using 105 simulations in t ∈ [0, 24] (× 103 Wh/m2) 

 t  Expected value, E(Xt) 

 Stochastic schemes  Wong-Zakai Scheme with 

 Euler  Euler, Δ = 0.01  Milstein  Explicit  RK4  Adams-B  Predictor-C 

0  0  0  0  0  0  0  0 

1  0.0002  0.0002  0.0001  0.0000  0.0002  0.0001  0.0002 

2  0.0000  0.0000  0.0001  0.0000  0.0004  0.0000  0.0000 

3  0.0002  0.0000  0.0000  0.0000  0.0001  0.0000  0.0000 

4  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

5  0.0052  0.0049  0.0045  0.0049  0.0054  0.0049  0.0049 

6  0.0383  0.0380  0.0382  0.0385  0.0387  0.0383  0.0380 

7  0.0935  0.0935  0.0932  0.0932  0.0963  0.0974  0.0935 

8  0.2812  0.2785  0.2808  0.2808  0.2826  0.2863  0.2785 

9  0.5211  0.5195  0.5206  0.5203  0.5266  0.5285  0.5195 

10  1.0074  1.0052  1.0072  1.0063  1.0164  1.0154  1.0052 

11  1.3289  1.3045  1.3284  1.3284  1.3051  1.3302  1.3045 

12  1.5871  1.5690  1.5871  1.5868  1.5678  1.5788  1.5690 

13  1.4501  1.4346  1.4499  1.4497  1.4253  1.4342  1.4346 

14  1.1721  1.1680  1.1724  1.1723  1.1609  1.1673  1.1680 

15  0.9707  0.9725  0.9713  0.9710  0.9685  0.9707  0.9725 

16  0.8100  0.8139  0.8100  0.8095  0.8123  0.8138  0.8139 

17  0.6671  0.6674  0.6672  0.6666  0.6622  0.6626  0.6674 

18  0.4101  0.4120  0.4105  0.4099  0.4063  0.4068  0.4120 

19  0.1998  0.2047  0.2004  0.1993  0.2028  0.2035  0.2047 

20  0.0968  0.1019  0.0970  0.0964  0.1013  0.1011  0.1019 

21  0.0468  0.0504  0.0470  0.0470  0.0502  0.0498  0.0504 

22  0.0227  0.0251  0.0229  0.0231  0.0250  0.0247  0.0251 

23  0.0111  0.0126  0.0107  0.0114  0.0133  0.0128  0.0126 

24  0.0057  0.0062  0.0050  0.0055  0.0064  0.0064  0.0062 

As it was aforementioned, the relative error percentages (percent errors) are found as:

 
MilsteinEuler

0.0035 0.0038 0.0034 0.0038
100 7.89%, 100 10.53%

0.0038 0.0038
δ δ

− −
= × = × 

 
Explicit WZ-AB

0.0037 0.0038 0.0039 0.0038
100 2.63%, 100 2.63%

0.0038 0.0038
δ δ

− −
= × = × 

 

 
WZ-PC

0.0034 0.0038
100 7.89%

0.0038
δ

−
= × 
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Table 3. Comparison of results for eq. (14) using 105 simulations in t ∈ [24, 48] (× 103 Wh/m2)

 t  Expected value, E(Xt) 
 Stochastic schemes  Wong-Zakai Scheme with 

 Euler  Euler (106)  Milstein  Explicit  RK4 Adams-B Predictor-C 
24  0.0057  0.0062  0.0050  0.0055  0.0064  0.0064  0.0064 
25  0.0029  0.0029  0.0024  0.0027  0.0031  0.0028  0.0032 
26  0.0011  0.0012  0.0015  0.0018  0.0018  0.0013  0.0020 
27  0.0006  0.0005  0.0010  0.0008  0.0011  0.0004  0.0010 
28  0.0004  0.0005  0.0004  0.0001  0.0008  0.0001  0.0004 
29  0.0038  0.0046  0.0050  0.0050  0.0051  0.0047  0.0045 
30  0.0399  0.0398  0.0405  0.0409  0.0402  0.0414  0.0401 
31  0.0977  0.0985  0.0981  0.0982  0.1028  0.1008  0.1050 
32  0.4995  0.5024  0.4996  0.5001  0.5143  0.5095  0.5129 
33  0.9300  0.9237  0.9300  0.9304  0.9271  0.9286  0.9165 
34  1.1079  1.0929  1.1077  1.1083  1.0889  1.0999  1.0873 
35  1.2334  1.2326  1.2335  1.2335  1.2412  1.2502  1.2414 
36  1.5153  1.5085  1.5151  1.5151  1.5110  1.5154  1.5110 
37  1.5524  1.5375  1.5514  1.5519  1.5278  1.5377  1.5312 
38  1.2761  1.2736  1.2763  1.2766  1.2684  1.2739  1.2712 
39  1.0522  1.0506  1.0524  1.0523  1.0439  1.0484  1.0467 
40  0.7924  0.7945  0.7926  0.7927  0.7874  0.7915  0.7880 
41  0.5007  0.5046  0.5013  0.5009  0.4992  0.5023  0.4998 
42  0.2810  0.2863  0.2814  0.2816  0.2833  0.2850  0.2827 
43  0.1367  0.1419  0.1364  0.1364  0.1411  0.1420  0.1406 
44  0.0661  0.0704  0.0662  0.0663  0.0702  0.0707  0.0698 
45  0.0321  0.0347  0.0324  0.0318  0.0348  0.0354  0.0344 
46  0.0153  0.0170  0.0157  0.0150  0.0176  0.0176  0.0173 
47  0.0073  0.0082  0.0077  0.0067  0.0085  0.0085  0.0087 
48  0.0035  0.0038  0.0034  0.0037  0.0038  0.0039  0.0041 

It is seen that the Wong-Zakai method with the Adams-Bashforth and Ad-
ams-Bashorth-Moulton predictor-corrector pairs gives the results with least error at t = 24. 
Note that the values of the parameters for eq. (14) have been used for the numerical simulations:

 0.699, 0.845x xθ µ= =

and the noise scaling parameter has been used as σx = 113 [5].
Problem 3. (An electric circuit problem): A RC circuit with constant parameters has 

been given as [4]:
( ) ( ) ( ) ( ) ( ) ( ) 0

d 1 , 0
d

Q t
R Q t V t t W t Q Q

t C
α+ = + = (15)
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where Q(t) is the electric charge at time t, V(t) – the voltage at t and α(t) show the noise intensity 
with W(t) = (d/dt)B(t) with the Brownian motion B(t). 

If

 
( ) ( ) ( )1, sin , 1, 2

25
tV t e t t R Cα= = = =

case with Q0 = 3 is considered, we get Ito SDE:

( ) ( ) ( )
sin1d d ,  0 3

2 25
t

t t
t

Q e Q t dW t Q = − + = 
 

(16)

The expected value for Q(t) is given:

[ ] / /

0

1( ) 3 ( )d
t

t RC s RCE Q t e e V s s
R

−
 
 = +
  

∫ (17)

in [4] and for V(t) = et, α(t) = 1/25sin(t), R = 1, C = 2, we get:

( ) /27 2
3 3

t tE Q t e e−  = +  (18)

For the Ito SDE (16), we obtain the following Stratonovich SDE:

( ) ( )
sin1d d d

2 25
t

t t
t

Q e Q t W t = − + 
 

 (19)

since the SDE contains additive noise. Com-
parison of the expected value eq. (18) with the 
approximate expected values obtained from the 
previously mentioned methods is given in the 
following tab. 4. The solutions through Euler, 
Milstein, and Wong-Zakai schemes are shown 
in fig. 4. 

The numerical results in tab. 4 have been 
obtained for a sub-interval length of Δn = 0.1 
for the stochastic methods and h = 0.1 for the 
deterministic methods used with Wong-Zakai 
method. The 105 simulations have been used 
for approximate expectations. The relative error 
percentages, relative to the expected value eq. 
(18), are found:

 
Euler Milstein

3.2210 3.2274 3.2208 3.2274
100 0.198%, 100 0.204%

3.2274 3.2274
δ δ

− −
= × = × 

 
WZ-AB WZ-PC

3.2275 3.2274 3.2275 3.2274
100 0.003%, 100 0.003%

3.2274 3.2274
δ δ

− −
= × = × 

 

Figure 4. Approximate solutions of eq. (19)
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Table 4. Comparison of results for eq. (19) using 105 simulations
 t  Expected value, E(Qt)  (19)

 Stochastic schemes  Wong-Zakai with:  
 Euler  Milstein  RKIV  Adams-B.  Predictor-C.  

0.0  3  3  3  3  3  3 
0.1  2.9557  2.9557  2.9563  2.9563  2.9563  2.9563 
0.2  2.9243  2.9243  2.9256  2.9255  2.9256  2.9256 
0.3  2.9064  2.9064  2.9082  2.9082  2.9082  2.9082 
0.4  2.9025  2.9025  2.9049  2.9049  2.9049  2.9049 
0.5  2.9133  2.9133  2.9164  2.9163  2.9163  2.9163 
0.6  2.9396  2.9396  2.9433  2.9433  2.9433  2.9433 
0.7  2.9824  2.9824  2.9868  2.9868  2.9868  2.9868 
0.8  3.0428  3.0427  3.0477  3.0478  3.0478  3.0478 
0.9  3.1218  3.1218  3.1275  3.1275  3.1276  3.1275 
1.0  3.2210  3.2208  3.2274  3.2275  3.2275  3.2274 

Table 5. Results for eq. (19) with varying number N of sub-intervals (Δn = T/N for T = 1)
 t  Euler-Maruyama  Milstein  E(Qt) 

 100  200  400  1000  100  200  400  
0.0  3  3  3  3  3  3  3  3 
0.1  2.9557  2.9560  2.9562  2.9563  2.9557  2.9560  2.9562 2.9563
0.2  2.9243  2.9249  2.9252  2.9254  2.9243  2.9249  2.9253 2.9256
0.3  2.9064  2.9073  2.9078  2.9080  2.9064  2.9073  2.9078 2.9082
0.4  2.9025  2.9037  2.9043  2.9047  2.9025  2.9037  2.9043 2.9049 
0.5  2.9133  2.9148  2.9156  2.9160  2.9133  2.9148  2.9156 2.9163 
0.6  2.9396  2.9414  2.9424  2.9429  2.9396  2.9415  2.9424 2.9433 
0.7  2.9824  2.9846  2.9857  2.9863  2.9824  2.9846  2.9857 2.9868 
0.8  3.0428  3.0453  3.0465  3.0473  3.0427  3.0452  3.0466 3.0478 
0.9  3.1218  3.1247  3.1261  3.1270  3.1218  3.1246  3.1261 3.1275 
1.0  3.2210  3.2242  3.2258  3.2267  3.2208  3.2242  3.2258 3.2274

The difference between Wong-Zakai schemes with Adams-Bashforth and predic-
tor-corrector methods and the other stochastic methods are abundantly clear for the results in 
tab. 4. Increase in the evaluation points for Milstein and Euler methods seem to decrease the 
error in the results, as seen in tab. 5. The N = 100 points have been used for the approximate 
expected value with Wong-Zakai schemes and almost 0.003% relative error has been obtained, 
whereas Euler and Milstein schemes have fail to produce results with such a small amount of 
error with more evaluation points.The N = 1000 points for Euler-Maruyama scheme results in 
a relative error of 0.022%, whereas this amount is 0.050% for N = 400 points and 0.099% for  
N = 200 points with both methods. Note that although stochastic Runge-Kutta method seems 
to have no error at t = 1.0, results show that there is a similar amount of errors for this method 
too. Increasing the simulation repetitions from 105-106 does little effect for the relative errors 
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in Euler, Milstein and Runge-Kutta methods too. Milstein method with the same number of 
sub-intervals and 106 simulations gives 0.201% relative errors, which is not much different from 
0.204% for 10 simulations.

Conclusion

In this study, Wong-Zakai approximation for Stratonovich SDE has been used with two 
deterministic approximation schemes, Adams-Bashforth and predictor-corrector method, to ob-
tain approximate solutions for SDE appearing in modelling problems. The SDE examples from 
energy and electrical engineering problems were used to present the applications of the method. 
Examples show that Wong-Zakai convergence and deterministic approximation methods of dif-
ferential equations provide a powerful approximation technique for SDE. This method is an effec-
tive and essential alternative for the investigation of SDE. Apart from providing an alternative to 
the popular methods like Euler-Maruyama, Milstein and Runge-Kutta, the method also provides 
the option to use various deterministic approximation schemes together with Wong-Zakai conver-
gence. This flexible structure of the method provides an advantage in applications since it gives 
the option to choose the better deterministic scheme through the investigation of the structure of 
the SDE under consideration. Deterministic schemes like Adams-Bashforth, Heun, Euler and, etc. 
can be evaluated to obtain the best approximation with Wong-Zakai method. The examples also 
show that Wong-Zakai method can achieve a better convergence rate in some cases. In Problem 3, 
it is seen that Wong-Zakai approximation with deterministic Adams-Bashforth and predictor-cor-
rector schemes achieves similar relative errors by using less than 10 times evaluation points com-
pared to the stochastic Euler scheme, which is one of the most popular stochastic approximation 
methods. The 10 times more evaluation points means much more computation time and burden, 
even for computer assisted calculations. Hence, the Wong-Zakai alternative promises a signifi-
cantly smaller amount of workload and time in some applications. Similar simulation numbers 
were used for all of the methods in applications to obtain the approximate expectations and Wong-
Zakai method was found to be performing at least on the same level as Euler-Maruyama and Mil-
stein methods. Considering these two methods are widely used in applications appearing in engi-
neering, finance, biology and, etc., this method should be considered for the investigation of SDE 
since it promises better accuracy and approximations whenever Wong-Zakai convergence can be 
used. Note that the deterministic schemes with better convergence rates could be used with Wong-
Zakai approximation obtain even better results against Euler and Milstein schemes. A thorough 
investigation was performed with various stochastic methods, MATLAB-SDE algorithm, Mon-
te-Carlo simulations and the expectations of the SDE to present the results. All of the stochastic 
investigation methods show that Wong-Zakai is an accurate and reliable alternative tool for SDE.
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