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In this paper, the fractional heat equation in a sphere with hybrid fractional de-
rivative operator is investigated. The heat conduction is considered in the case of 
central symmetry with heat absorption. The closed form solution in the form of 
three parameter Mittag-Leffler function is obtained for two Dirichlet boundary 
value problems. The joint finite sine Fourier-Laplace transform is used for solv-
ing these two problems. The dynamics of the heat transfer in the sphere is illus-
trated through some numerical examples and figures. 
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Introduction 

Recently, fractional calculus is used to study many real world problems formulated 

in the form of fractional PDE [1-6]. Many definitions for the fractional derivative are pro-

posed in the literature  [7-12]. Some examples of these definitions are Caputo, Riemann-

Liouville, He’s fractional derivative, generalized fractional derivatives, and Reisz definitions 

[1-20].  

Fractal calculus is very useful in modeling phenomena in hierarchical or porous me-

dia and it can reveal hidden structures that continuum mechanics would never be able to find 

[16]. In order to deal with problems in porous media, He [15, 20] developed a new general-

ized fractional derivative which is given by: 
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where f0 is the solution of the continuous problem with the same conditions of the fractal 

problem. 

Very recently, the hybrid fractional derivative is proposed in [21]. The definition of 

this new derivative is given by:  
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which is a linear combination of Caputo derivative and Riemann-Liouville integral. This new 

definition is widely used in modeling many phenomena in science and engineering, see for 

example [22-24]. 

In this paper, we consider the following time-fractional heat conduction equation 

with heat absorption term in spherical coordinates in the case of central symmetry [6]: 
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( , )    ,  0    t rr rD T r t a T T bT r R
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with the following two cases of Dirichlet conditions: 

 0( ,0) 0,   ( , ) ( )T r T R t p t= =  (2a) 

 ( ,0) 0,   ( , ) p
oT r T R t T t= =  (2b) 

where p0, T0 are arbitrary constants and δ(t) is the Dirac delta function. 

In the next section, we use the joint finite sin Fourier-Laplace transform to solve eq. 

(1) with conditions (2a) and (2b).  

Exact solution of eq. (1) with condition (2a) 

Applying finite sin Fourier transform, see eq. (A1) in the Appendix, to eq. (1), we 

obtain: 
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Using eq. (A3) in Appendix, we obtain: 
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Using the condition 0( , ) ( )T R t p t= , we obtain: 
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Or equivalently: 
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Applying Laplace transform to eq. (6), we obtain: 
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Using eq. (A5) in the Appendix, eq. (7) becomes: 
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Using the condition T (r, 0) = 0 we obtain: 
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Solving eq. (9) with respect to ( , ),kT s  we obtain: 
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Equation (10) can be rewritten in the form: 
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Taking the inverse Laplace transform of both sides of eq. (11), we obtain: 
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Using eq. (A7) in Appendix, we obtain: 
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Applying the inverse finite sin Fourier, see eq. (A4) in the Appendix, to (12), we ob-

tain: 
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Figure 1 shows the distribution of the temperature through the sphere at different 

values of the order of the fractional derivative, α, and the time, t, when the boundary condition 

is taken in the form of Dirac delta function. Figure 2 shows the effect of the parameter, k0, on 

the distribution of the temperature through the sphere at different values of the order of the 
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fractional derivative, α, when the boundary condition is taken in the form of Dirac delta func-

tion. From fig. 2, we can realize that the temperature increases with increasing α. The tempera-

ture profile changes with changing the parameter k0. At large radius the temperature profile in-

creases with increasing k0. 

   

   

Figure 1. Plot of the solution (13) when a = b = k0 (α) = 1, p0 = 10, R = 2, k1(α) = 0 for different values of 

t; (a) t = 0.5, (b) t = 1, (c) t = 2, and (d) t = 4 

Exact solution of eq. (1) with condition (2b) 

Applying the finite sin Fourier transform to eq. (1) and using the condition 

0( , ) ,pT R t T t=  we obtain: 

 CPC 1 2
0 0( , ) ( 1)     ( ) ( , )k p

t k k kD T t a RT t a b T t   += − − +  (14) 

Applying the Laplace transform to eq. (14), we obtain: 
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0 0[ ( , )] [ ( 1)     ( ) ( , )]k p

t k k kD T t a RT t a b T t   += − − +  (15) 
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Figure 2. Plot of the solution (13) when a = b = t = 1, p0 = 10, R = 4, k1(α) = 0 for different values of k0 
and α; (a) α = 0.5 and (b) α = 0.9 

Using eq. (A5) in the Appendix, we get: 
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Using the condition ( ,0) 0,T r =  eq. (16) becomes: 
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Solving eq. (17) with respect to ( , ),kT s  we obtain: 
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Equation (18) can be rewritten in the form: 
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Taking the inverse Laplace transform of both sides of eq. (19), we obtain: 
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Using eq. (A7) in the Appendix, we get: 
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Using the inverse finite sin Fourier, eq. (21) becomes: 
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Figure 3. Plot of the solution (22) when k0 (α) = t = 1, T0 = 10, p = 0, R = 2, p = k1(α) = 0 for different 
values of a and b; (a) a = b = 1, (b) a = b = 0.1, (c) a = 2, b = 0.5, and (d) a = 3, b = 0.1 
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Figure 3 shows the distribution of the temperature through the sphere at different 

values of the order of the fractional derivative, α, and the parameters a and b in the case of 

constant boundary condition. Figure 4 shows the effect of the parameter, 0k , on the distribu-

tion of the temperature through the sphere at different values of the order of the fractional de-

rivative α. Figure 4 shows that the temperature T increases when the parameter k0 decreases. 

Also figs. 3 and 4 show that the temperature through the sphere T increases with increasing 

the radius r. 

   

Figure 4. Plot of the solution (22) when a = b = t = p = 1, T0 = 10, R = 4, k1(α) = 0 for different values of 
k0 and α; (a) α = 0.5 and (b) α = 0.9 

Conclusion 

We have successfully used joint finite sine Fourier-Laplace transform to get the 

closed form solution of the fractional heat conduction problem in a sphere with heat absorp-

tion and central symmetry. The new hybrid fractional derivative operator is used to investi-

gate the heat distribution inside the sphere. Two Dirichlet boundary value problems are inves-

tigated. The obtained solutions are in the form of three parameter Mittag-Leffler function. The 

results obtained in [6] can be considered as a special solutions of our results. Particularly, 

when we put k0(α) = 1 and k1(α) = 0 in eqs. (13) and (22) we retrieve the results obtained in 

[6]. 
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Appendix 

Definition 1. [22] The finite sin-Fourier transform of the function f(r) is defined: 
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Theorem 1. The finite sin-Fourier transform of the hybrid fractional derivative oper-

ator 
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Proof 
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Theorem 2. [25]  
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+ = − + − 
 

 (A3) 

Definition 2. [25] The Finite sin-Fourier transform of the function f(r) is defined: 

 1

1

sin( ) 2
[ ( )] ( ) ( ) k

k k k

k

r
f f r f

R r


  


−

=

= =   (A4) 

Theorem 3. [21] The Laplace transform of the hybrid fractional derivative operator 

is given by: 
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( )
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k
D f t k s F s k s f
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  
  − 

= + − 
 

 (A5) 

Lemma 1. [26] The Inverse Laplace of 
1

1

 
s

( )s

  

 

−

+
 is defined: 
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



−
− −
 

= − 
+  

 (A6) 

Lemma 2. [27] The Inverse Laplace of 
3

1 21

α

α α

s

As Bs+ +
 is given by:  

 
3

1 2 3

1 1 2 31 2

(1 ) 11 1 1
,(1 )1

0

( ) 1

1

k
k k k

k kk
k

s B
t E t

AAAs Bs


   

    


+ − − −− +

+ − −+
=

  −  
= −    + +   
  (A7) 
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