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For numerous fluids between elastic and viscous materials, the fractional deriv-
ative models have an advantage over the integer order models. On the basis of 
conformable fractional derivative and the respective useful properties, the bilinear 
form of time fractional Burgers equation and Boussinesq-Burgers equations are 
obtained using the generalized Bell polynomials and bilinear method. The kink 
soliton solution, anti-kink soliton solution, and the single-soliton solution for dif-
ferent fractional order are derived, respectively. The time fractional order system 
possesses property of time memory. Higher oscillation frequency appears as the 
time fractional order increasing. The fractional derivative increases the possibility 
of improving the control performance in complex systems with fluids between dif-
ferent elastic and viscous materials.
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Introduction 

Fractional differential equations have been used to represent many natural processes 
in physics, engineering material, finance and other mathematically oriented sciences [1, 2]. 
An effective method for such equations is imperative. Unlike from the ODE, finding exact 
analytical solutions of fractional differential equations is still difficult owning to the difference 
between the fractional calculus and the familiar ordinary calculus.

Since L’Hospital proposed the problem of what dnf/dxn means if n = 1/2, various of 
fractional derivatives have been proposed, such as Riemann-Liouville and Caputo derivative. 
Whereas, the kernels of Riemann-Liouville and Caputo derivative are singular which cause 
some effect when modelling the practical problems [3]. A new well-behaved fractional deriva-
tive called the conformable fractional derivative depending on the basic limit definition of the 
derivative possesses the basic properties as the usual derivative, especially the product rule and 
chain rule. Exact solution from the reduced equation can be further derived by different meth-
ods. Chung [4] studied the fractional Newtonian mechanics with the conformable fractional 
derivative. Eslami et al. [5] constructed the exact solutions to the space-time non-linear con-
formable fractional Bogoyavlenskii equations by using the first integral method. Akbulut and 
Kaplan [6] obtained the analytical solutions of (2+1)-D conformable time-fractional Zoomeron 
equation and third order modified KdV equation by auxiliary equation method. Kaya et al. [7] 
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modeled population density of a bacteria species in a microcosm by conformable fractional 
order differential equations with piecewise constant arguments.

As non-linear PDE simulating shock wave propagation and reflection, Burgers equa-
tion [8] is applied widely in traffic flow, shock wave, turbulence problem and continuous sto-
chastic process. The classical Boussinesq-Burgers equations [9, 10] describe the propagation of 
shallow water waves. For numerous fluids between elastic or viscous materials, the fractional 
models have an advantage over the integer order models. The studies of the exact solutions to 
fractional dynamical equations are meaningful.

In this paper, based on the new definition of fractional derivative and utilizing the 
link between the Bell polynomials and bilinear operators, we get the bilinear form of the time 
fractional Burgers equation and classical Boussinesq-Burgers equations. 

Preliminaries

Definition 1. [7] Let f: [0, ∞) → ℝ. Then the conformable fractional derivative of f of 
order α is defined:
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for all t > 0, α ∈ (0, 1). If  f is α-differential in (0, a), a > 0, and 
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Definition 2. [11, 12] The Hirota bilinear operator Dx is defined:

,
( ) ( ) ( , ) ( , ) , ,m n m n

t x t t x x t t x x
D D FG F t x G t x m n′ ′ ′ ′= =

′ ′= ∂ − ∂ ∂ − ∂ ∈ (1)

e. g.

	
2 3, 2 , 3 3x x x x xx x x xx x xxx xx x x xx xxxD FG F G FG D FG F G F G FG D FG F G F G F G FG= − = − + = − + −

Using the property of conformable fractional derivative and Definition 2, we define 
operator Dt

α:
, (0,1]t t tD FG T FG FT Gα α α α= − ∈ (2)

Generalized Binary-Bell-polynomial form for dynamical equations 

Generalized Binary-Bell-polynomial form 

Consider a C ∞ function p(x) and q(t). The variable pnx = ∂n
x p(x), n = 1, 2,... with Bell’s 

exponential polynomials Ynx(p) ≡ e–p∂n
xep. The variable qαt =T αt q(t) with respective fractional 

exponential polynomials:

	 ( ) e eqq
ttY Tqα
α−≡

So we have: 
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This generalized Bell polynomials can be extended to more dimensions by introduc-
ing more independent variables [13]. Such as the 2-D extension:
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Lemma 1. [13] Setting F = ef and G = eg, then the link between Hirota operators and 
Bell polynomial:
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Proof. From (3), we have:

	
, ( ) ,( ) ,

0 0

( ) ( ) ( )
m n

mt nx m p t n q x pt qx
p q

m n
Y f g Y f Y g

p q − −
= =

  
+ =   

  
∑∑

and

	 , , , ,[( 1) ] ( 1) ( )r s m n
m n r s m n r sY q Y q+ +− = −

Using the Hirota bilinear operator (1):
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Lemma 2. Setting F = ef and G =eg, the link between generalized Hirota operators and 
Bell polynomial with the conformable fractional derivative:
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Specially:
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Generalized Binary-Bell-polynomial form for Burgers equation 

For (1+1)-D time fractional Burgers equation with constant coefficient [14, 15]:
2 0t x xxT v Avv Bvα − − = (4)

We introduce the dimensionless field p by setting:

xv cp= (5)
with c = B/A. The equations for p can be derived from eq. (4):

2( ) ( ) 0t xp B pα − =  (6)
Substituting p = ln(f /g) into expressions eq. (6), the bilinear form of eq. (4) can be 

obtained:

( )2 0t xD BD f gα − ⋅ = (7)

where Dx is the Hirota bilinear operator defined by (1), Dt 
α is the defined by (2), f and g are func-

tions of x and t which can be expanded as the power series of a small parameter ε:
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Substituting eq. (8) into eq. (7) and collecting the coefficients of the same power of ε:
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For eq. (8), choosing f1(t, x) = aexp(ξ1)/ε , fi(t, x) = 0 for i = 2, 3, 4,... and gi(t, x) = 0 
for i = 1, 2, 3,...:

1
1 1 21 e , 1 withf a g k x k tξ αξ= + = = + (10)

where a, k1, and k2 are arbitrary constants. Substituting eq. (10) into eq. (9) and using eq. (5):
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1 2

exp( )
1 exp( )x x
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A A a k x k t

α

α
+

= = =
+ +

(11)

where k2 = (B/α)k1
2. In order to have an intuitive understanding of the solution to the fractional 

Burgers equation eq. (4), setting a = k1 = 1 in eq. (11), we give the corresponding figs. 1-3 for v 
in eq. (11) where A = B = 1, and figs. 4-6 for v in eq. (11) where A = –1, B = 1.

Remark 1. From the soliton solution (11) to the fractional Burgers equation eq. (4) and 
respective figs. 4-6, we can find that:
–– As AB > 0, v is a kink soliton solution; As AB < 0, v is an anti-kink soliton solution. 
–– The time fractional order system possesses property of time memory. As the increase of the 

time fractional order, the system becomes increasingly sensitive to time changes. 



Liu, M., et al.: Exact Solutions of Fractional Non-Linear Equations by ... 
THERMAL SCIENCE: Year 2021, Vol. 25, No. 2B, pp. 1373-1380	 1377

–– The fractional derivative improves the control performance in complex systems for fluids 
between different elastic and viscous materials.

Generalized Binary-Bell-polynomial form for  
fractional classical Boussinesq-Burgers equations

Consider the classical Boussinesq-Burgers equations in fractional form:
1 1( 1) 2 0
2 2

11 (1 ) 2( ) 0
2 2

t xx x x
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Introduce p and q by setting:
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The equations for p and q can be derived from eq. (12):
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into expressions eq. (14), where f and g are functions of x and t, the bilinear form of eq. (12) 
can be obtained:
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            Figure 1. The α = 0.2                     Figure 2. The α = 0.6                       Figure 3. The α = 0.9
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where Dx is the Hirota bilinear operator defined by (1), Dt 
α is defined by (2), f and g can be ex-

panded as the power series of a small parameter ε:
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Substituting eq. (17) into eq. (16) and collecting coefficients of the same power of ε:
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For eq. (17), choosing  f1(t, x) = p1exp(ξ2)/ε, g1(t, x) = q1exp(ξ2)/ε, fi(t, x) = gi(t, x) = 0 for 
i = 2, 3, 4,..., we obtain:

2 2
1 1e , 1 ef p g qξ ξ= = + (19)

with ξ2 = k1x + k2tα. Substituting eq. (19) into eq. (18) and using eqs. (13) and (15), we obtain 
the soliton solution:

1

1 1 2
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1
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(20)

where k2 = k1
2/(2α). 

In order to have an intuitive understanding of the solution to the fractional classical 
Boussinesq-Burgers equations eq. (12), setting p1 = 1, q1 = 0.1, k1 = 1 in (20), we give the cor-
responding figs. 7-9 for u in eq. (20), figs. 10-12 for overview of u in eq. (20), figs. 13-15 for v 
in eq. (20) where β = 4 and figs. 16-18 for v in eq. (20) where β = –4.

Remark 2. The anti-kink soliton and single-soliton solution eq. (20) to the fractional 
classical Boussinesq-Burgers equations eq. (12) are obtained. From the exact solutions and 
respective figs. 7-18, we can find that:
–– As β > 0, v is a bright soliton solution. As β < 0, v is a dark soliton solution.
–– The time fractional order system possesses property of time memory. The times of oscilla-

tion become more within the same time interval, which means higher oscillation frequency 
with the time fractional order increasing. The fractional derivative increases the possibility 
of improving the control performance in complex systems by changing the fractional order 
with fluids between different elastic and viscous materials.
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Conclusion 

Based on the conformable fractional derivative, we obtain the bilinear form of the 
time fractional Burgers and classical Boussinesq-Burgers equations. The kink soliton solution, 
anti-kink soliton solution and the single-soliton solution are obtained, respectively. The per-
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formance of the proposed method in this paper is illustrated through analytical solution and 
computer simulations. The fractional derivative systems could be used in modelling or fitting 
fluids between elastic and viscous materials or the properties of various stability augmentation 
systems such as the dampers. The applications of the method to other fractional derivative dy-
namic equations which possess practical meaning are worthy of further study.
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