NUMERICAL STUDY OF THE TURBULENT NATURAL CONVECTION OF NANOFLUIDS IN A PARTIALLY HEATED CUBIC CAVITY

by

Zakaria LAFDAILI*, Sakina EL-HAMDANI*, Abdelaziz BENDOU*, Karim LIMAMb, and Bara EL-HAFAD*

a Laboratory for Mechanics, Processes, Energy and Environment (LMPEE), National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco

b LASIE, University La Rochelle, La Rochelle Cedex 1, France

Original scientific paper
https://doi.org/10.2298/TSCI200513057L

In this work we study numerically the 3-D turbulent natural convection in a partially heated cubic cavity filled with water containing metallic nanoparticles, metallic oxides, and others based on carbon. The objective is to study and compare the effect of the addition of nanoparticles studied in water and also the effect of the position of the heated partition on the heat exchange by turbulent natural convection in this type of geometry, which can significantly improve the design of heat exchange systems for better space optimization. For this we have treated numerically for different volume fractions the turbulent natural convection in the two cases where the cavity is heated respectively by a vertical and horizontal strip in the middle of one of the vertical walls. To take into account the effects of turbulence, we used the standard k-ε turbulence model. The governing equations are discretized by the finite volume method using the power law scheme which offers a good stability characteristic in this type of flow. The results are presented in the form of isothermal lines and current lines. The variation of the mean Nusselt number is calculated for the two positions of the heated partition as a function of the volume fraction of the nanoparticles studied in water for different Rayleigh numbers. The results show that carbon-based nanoparticles intensify heat exchange by convection better and that the position of the heated partition significantly influences heat exchange by natural convection. In fact, an improvement in the average Nusselt number of more than 20% is observed for the case where the heated partition is horizontal.

Key words: convection, natural, turbulence, nanofluid, cubic

Introduction

Today, with the permanent growth in energy prices, its control has become a major challenge in all areas of activity. For energy professionals, the first challenge is to design energy systems and processes with better efficiencies. The increased demand for the performance of these thermal systems has always aroused considerable interest in techniques for improving heat transfer. The technological importance of heat transfer by natural convection is confirmed by its use in different fields such as metallurgy, the food industry, solar technology, cooling of nuclear reactors, cooling of electronic circuits and transformers, etc., it then becomes necessary to properly quantify the heat exchanges between a heated wall and a flow-

* Corresponding author, e-mail: zakaria.lafdaili@edu.uiz.ac.ma
ing fluid for better design and optimal use of heat exchange systems. The thermophysical properties of the heat transfer fluids used often limit the efficiency of such processes. But with advances in nanotechnology, the idea of suspending nanoscale particles in a base liquid has improved its thermal properties for better intensification of heat transfer.

The study of the natural convection of nanofluids in cavities has been the subject of a very large number of works, both theoretical and experimental. Choi and Eastman [1] by dispersing TiO$_2$ nanoparticles with a diameter of 27 nm in water, obtained an improvement in thermal conductivity of 10.7% for a volume fraction of 4.35%. This value is much lower than the 32% obtained for the nanofluid (water + Al$_2$O$_3$) with the same concentration of nanoparticles. Namburu et al. [2] presented a monophasic model to study numerically the heat transfer characteristics of a nanofluid in a circular tube where the flow is in turbulent regime. They found that the Nusselt number is greater for the small diameters of nanoparticles. Other researchers have thought of other models. Indeed, [3] and Mirmasoumi and Bezdamehe [4] used the two-phase model of a nanofluid in a tube in forced natural convection.

Much more work has been done over the past decade to characterize nanofluids. Irfan et al. [5] analyzed the improvement of heat transfer by natural convection of nanofluids through a vertical corrugated plate subjected to a variable heat flux. They found that the rate of heat transfer in Al$_2$O$_3$- and Cu-based nanofluids compared to pure water can be increased due to the increased concentration of nanoparticles. Fallah et al. [6] have studied numerically the effect of the volume fraction of Al$_2$O$_3$ nanoparticles in water on the hydrodynamic and thermal characteristics in natural convection in a concentric horizontal annular enclosure for Rayleigh numbers ranging from 10^3 to 10^5. Javed et al. [7] presented a detailed literature related to studies on heat transfer by natural convection of nanofluids in different flow regimes for different heat transfer devices such as tubes, heat sinks, heat exchangers, etc. The authors highlighted the effect of the flow regime, the type of nanofluid used, the size of the nanoparticles, the temperature and the concentration of nanoparticles on the thermal characteristics of the nanofluid.

Other studies have highlighted the effects of the geometrical appearance of confined enclosures, as well as their heating mode on convective heat transfer. Mendu et al. [8] studied the natural convection of nanofluids in a square enclosure embedded with a discrete heating element at the bottom to highlight the effect of the position of the heater on the heat exchange. Aghajani et al. [9] also studied the effect of the location of the heating resistance on heat transfer and the generation of entropy in a cavity. Their results show that the location of the heater has a significant effect on the flow pattern and temperature fields within the enclosure and, subsequently, on the generation of entropy. Indeed, a greater heat transfer was observed when the heater is located on a vertical wall. Terekhova et al. [10] studied the influence of the geometry of the enclosure on the 3-D flow structure and heat transfer. They have shown that the 3-D nature of the flow has a profound effect on heat transmission for smaller form ratios (F.R <1). For longer enclosures, the heat emission coefficient is not entirely related to the height/width ratio of the enclosure and can be determined by a 2-D approach.

The turbulent nature can also considerably influence convective flows by improving mixtures and heat and mass transfers [11-13]. Knowledge of these phenomena can therefore contribute to the development of strategies for controlling or optimizing heat and mass transfers or transport.

Most studies of natural convection have dealt with 2-D configurations. To get closer to reality and constitute a research fund for heat exchange systems, we study numerically the flow of nanofluids in a 3-D cavity (cube) in order to highlight the effects of the volume frac-
tion, Φ, of the nanoparticles studied in water and the effect of the position of the heating strip in the vertical wall on the turbulent natural convection.

Modeling and equations

The configuration studied is shown in fig. 1 is a cubic cavity, filled with water containing different concentrations of nanoparticles. The cavity is formed by a vertical wall containing in its center a vertical/horizontal band representing 25% of its surface and maintained at a hot temperature, T_h, a straight vertical wall maintained at a constant cold temperature, T_c and two other horizontal walls considered adiabatic.

All the thermophysical properties of nanofluids are considered constant, except for the variation of the density which is estimated by the Boussinesq approximation. Table 1 groups together in the thermophysical properties of the pure fluid and of the nanoparticles studied.

<table>
<thead>
<tr>
<th>Nanoparticle</th>
<th>Pr</th>
<th>ρ [kg m$^{-3}$]</th>
<th>C_p [J kg$^{-1}$ K$^{-1}$]</th>
<th>k [W m$^{-1}$ K$^{-1}$]</th>
<th>β [10^{-5} K$^{-1}$]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>4.7</td>
<td>997</td>
<td>4179</td>
<td>0.613</td>
<td>21</td>
<td>[13]</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td></td>
<td>3970</td>
<td>765</td>
<td>40</td>
<td>0.85</td>
<td>[13]</td>
</tr>
<tr>
<td>CuO</td>
<td></td>
<td>6500</td>
<td>540</td>
<td>18</td>
<td>1.0</td>
<td>[14]</td>
</tr>
<tr>
<td>Cu$_3$O</td>
<td></td>
<td>6080</td>
<td>474</td>
<td>42</td>
<td>0.19</td>
<td>[15]</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td></td>
<td>5200</td>
<td>670</td>
<td>6</td>
<td>1.3</td>
<td>[16]</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>3580</td>
<td>879</td>
<td>45</td>
<td>3.36</td>
<td>[17]</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td></td>
<td>3970</td>
<td>765</td>
<td>36</td>
<td>0.63</td>
<td>[18]</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td></td>
<td>4250</td>
<td>686.2</td>
<td>8.95</td>
<td>0.9</td>
<td>[19]</td>
</tr>
<tr>
<td>ZnO</td>
<td></td>
<td>5600</td>
<td>495</td>
<td>80</td>
<td>3</td>
<td>[20]</td>
</tr>
<tr>
<td>ZrO$_2$</td>
<td></td>
<td>5600</td>
<td>418</td>
<td>2.6</td>
<td>0.85</td>
<td>[21]</td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td>19300</td>
<td>129</td>
<td>318</td>
<td>1.42</td>
<td>[22]</td>
</tr>
<tr>
<td>Ag</td>
<td></td>
<td>10500</td>
<td>235</td>
<td>429</td>
<td>1.89</td>
<td>[22]</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td>8933</td>
<td>385</td>
<td>400</td>
<td>1.67</td>
<td>[22]</td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td>8900</td>
<td>420</td>
<td>100</td>
<td>1.2</td>
<td>[23]</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td></td>
<td>5060</td>
<td>397.21</td>
<td>904.4</td>
<td>2.34</td>
<td>[24]</td>
</tr>
<tr>
<td>Nimonic 80A</td>
<td></td>
<td>8190</td>
<td>448</td>
<td>112</td>
<td>1.27</td>
<td>[25]</td>
</tr>
<tr>
<td>SiC</td>
<td></td>
<td>3160</td>
<td>675</td>
<td>490</td>
<td>0.3</td>
<td>[26]</td>
</tr>
<tr>
<td>Steel</td>
<td></td>
<td>8030</td>
<td>502.48</td>
<td>16.27</td>
<td>1.2</td>
<td>[27]</td>
</tr>
<tr>
<td>C60</td>
<td></td>
<td>3500</td>
<td>509</td>
<td>2300</td>
<td>1.72</td>
<td>[26]</td>
</tr>
<tr>
<td>Diamond</td>
<td></td>
<td>3510</td>
<td>497.26</td>
<td>1000</td>
<td>0.1</td>
<td>[28]</td>
</tr>
<tr>
<td>GO</td>
<td></td>
<td>1800</td>
<td>717</td>
<td>5000</td>
<td>28.4</td>
<td>[19]</td>
</tr>
<tr>
<td>MWCNT</td>
<td></td>
<td>1600</td>
<td>796</td>
<td>3000</td>
<td>0.1</td>
<td>[29]</td>
</tr>
<tr>
<td>SWCNT</td>
<td></td>
<td>2600</td>
<td>425</td>
<td>6600</td>
<td>0.1</td>
<td>[29]</td>
</tr>
</tbody>
</table>
To account for the effects of turbulence, the k-ε model is used. Therefore, the governing equations written in the Cartesian co-ordinate system (x, y, z) are:

- equation of continuity
 \[\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0 \]

- momentum equation in the x-direction
 \[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[\mu_{nf} + (\mu_t)_{nf} \left(\frac{2}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} + (\mu_t)_{nf} \left(\frac{2}{\partial y} \right) \right] \]

- momentum equation in the y-direction
 \[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial y} \left[\mu_{nf} + (\mu_t)_{nf} \left(\frac{2}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} + (\mu_t)_{nf} \left(\frac{2}{\partial z} \right) \right] + g \rho_{nf} \beta_{nf} (T - T_{ref}) \]

- momentum equation in the z-direction
 \[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial z} + \frac{\partial}{\partial z} \left[\mu_{nf} + (\mu_t)_{nf} \left(\frac{2}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} + (\mu_t)_{nf} \left(\frac{2}{\partial x} \right) \right] \]
– thermal energy equation

\[
\rho_{nf} u \frac{\partial T}{\partial x} + \rho_{nf} v \frac{\partial T}{\partial y} + \rho_{nf} w \frac{\partial T}{\partial z} = \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial u}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial u}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial v}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial v}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial w}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial w}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial w}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial T}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial T}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial T}{\partial z} \right) \right]
\]

(5)

– turbulent kinetic energy equation

\[
\rho_{nf} u \frac{\partial k}{\partial x} + \rho_{nf} v \frac{\partial k}{\partial y} + \rho_{nf} w \frac{\partial k}{\partial z} = \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial u}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial u}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial v}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial v}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial w}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial w}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial w}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial k}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial k}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial k}{\partial z} \right) \right] + (P_{k})_{nf} - \rho_{nf} \varepsilon
\]

(6)

– equation for the rate of energy dissipation

\[
\rho_{nf} u \frac{\partial \varepsilon}{\partial x} + \rho_{nf} v \frac{\partial \varepsilon}{\partial y} + \rho_{nf} w \frac{\partial \varepsilon}{\partial z} = \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial u}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial u}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial v}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial v}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial w}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial w}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial w}{\partial z} \right) \right] + \frac{\partial}{\partial x} \left[\mu_{nf} \left(\frac{\partial \varepsilon}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu_{nf} \left(\frac{\partial \varepsilon}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu_{nf} \left(\frac{\partial \varepsilon}{\partial z} \right) \right] + \mu_{nf} \left(\frac{\partial u}{\partial x} \right) + \mu_{nf} \left(\frac{\partial v}{\partial y} \right) + \mu_{nf} \left(\frac{\partial w}{\partial z} \right) + C_{e1} f_1 (P_{k})_{nf} + C_{e2} (G_{k})_{nf} - \rho_{nf} C_{e3} \varepsilon \frac{\varepsilon}{k}
\]

(7)

The \((P_{k})_{nf}\) represents the stress production and is calculated:

\[
(P_{k})_{nf} = (\mu_{nf}) \left[2 \left(\frac{\partial u}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 + 2 \left(\frac{\partial w}{\partial z} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial z} \right)^2 \right]
\]

(8)

The \((G_{k})_{nf}\) is the buoyancy term, and is defined:

\[
(G_{k})_{nf} = \frac{(\mu_{nf})}{\sigma_{t}} g \beta_{nf} \frac{\partial T}{\partial y}
\]

(9)

The Prandtl number is calculated:

\[
Pr_{nf} = \frac{C_{Pnf} \mu_{nf} K_{eff, f}}{C_{Pf} \mu_{f} K_{eff, nf}}
\]

(10)

The following formulas were used to compute the thermal and physical properties of the nanofluids under consideration.

The eddy viscosity is calculated:

\[
(\mu_{ef})_{nf} = \rho_{nf} C_{\mu} k^{2} \varepsilon
\]

(11)
The dynamic viscosity of the nanofluid defined by the Brinkman model [30]:

$$\mu_{nf} = \frac{\mu_f}{(1 - \varphi)^{2.5}}$$

(12)

The $K_{eff,nf}$, the effective thermal conductivity of the nanofluid defined by the Maxwell-Garnetts model [31]:

$$K_{eff,nf} = K_{eff,f} \left[\frac{(K_{eff,p} + 2K_{eff,f}) - 2\phi(K_{eff,f} - K_{eff,p})}{(K_{eff,p} + 2K_{eff,f}) + \phi(K_{eff,f} - K_{eff,p})} \right]$$

(13)

The equations (13)-(15) are general relationships used to compute the density, the coefficient of thermal expansion and the heat capacity for a classical two-phase mixture [32].

$$\rho_{nf} = (1 - \varphi)\rho_f + \varphi\rho_p$$

(14)

$$\beta_{nf} = (1 - \varphi)\beta_f + \varphi\beta_p$$

(15)

$$C_{p,nf} = (1 - \varphi)C_{p,f} + \varphi C_{p,p}$$

(16)

The empirical constants were recommended by Launder and Spalding [33] is listed in tab. 2.

<table>
<thead>
<tr>
<th>C_μ</th>
<th>C_{α}</th>
<th>$C_{\alpha,2}$</th>
<th>σ_ϵ</th>
<th>σ_ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>1.44</td>
<td>1.92</td>
<td>1.0</td>
<td>1.33</td>
</tr>
</tbody>
</table>

By analogy with the expression of $C_{\varepsilon,3}$ suggested by Henkes [34], we use the following expression:

$$C_{\varepsilon,3} = \text{tanh} \left[\frac{v + \frac{v}{u}}{w^2} \right]$$

(17)

All physical properties were estimated at the average temperature:

$$T_{ref} = \frac{T_h + T_c}{2}$$

(18)

The average Nusselt number Nu_{av} of the hot wall is expressed:

$$Nu_{av} = -\frac{K_{eff,f}}{H^2 K_{eff,nf}} \left(\int_0^H \frac{\partial T}{\partial x} \right)_{x=L}$$

(19)

The Rayleigh number is defined:

$$Ra = \frac{\rho_{nf} \varepsilon \beta_{nf} \Delta T H^3}{\mu_{nf}^2 Pr_{nf}}$$

(20)
Numerical resolution and code validation

To numerically solve the PDE (1)-(7), we proceed to their discretizations in order to obtain a system of algebraic equations whose resolution allows us to determine the fields of all the variables of the problem considered. The finite volume method has been adopted to accomplish this discretization, and the developed SIMPLE algorithm for pressure correction.

The domain of computation is subdivided into finite number of elementary subdomains, called control volume. Each of these includes a node called the main node, as shown in fig. 2.

For a main node P, the points E and W (East and West) are neighbors in the direction $x-x$, the points N and S (North and South) are those in the direction $y-y$, while the points T and B (Bottom and Top) in the $z-z$ direction. The control volume surrounding P is delimited by strong solid lines. The faces of the control volume are located at points e and w in the direction $x-x$, n and s in the direction $y-y$ and t and b in the direction $z-z$.

Turbulent flows are significantly influenced near the walls. In fact, in the areas very close to the walls, the viscosity effects reduce the fluctuations in tangential speeds. Thus, to model the flows near the walls, we used a refined uniform mesh in the vicinity, fig. 3.

![Figure 2. The 3-D control volume](image)

![Figure 3. Refined uniform mesh near the walls](image)

To study the influence of the mesh, we calculated the average Nu_{avg} for different grids and for Rayleigh numbers 10^7, 10^8, and 10^9 to account for the turbulent regime. The results obtained for a cubic cavity filled with differentially heated water are presented in tab. 3.

Ra = 10^7	40 × 40 × 40	60 × 60 × 60	80 × 80 × 80	100 × 100 × 100
Ra = 10^8	16.92200	17.13907	17.31362	17.35151
Ra = 10^9	30.57809	31.24273	31.64807	31.75411

From tab. 3, it appears that the grid 80 × 80 × 80 is sufficiently fine to carry out the numerical simulations for the Rayleigh numbers 10^7, 10^8, and 10^9.
To discretize the governing equations, we are based on the finite volume method using the power law scheme which offers a good stability characteristic in the case of turbulent flows. The digital resolution of the problem was carried out by an elaborate FORTRAN code. The dynamic and thermal fields are calculated iteratively until the following convergence criterion is satisfied: the maximum residual value of mass, momentum, and thermal energy less than 10^{-6}.

To validate the numerical method, we compared the values of the Nuav calculated on the cold wall of a cubic cavity filled with air with those found by Bilgen et al. [35], Dixit et al. [36], Bairi et al. [37], and Lankhorst [38]. The values of the mean Nusselt number calculated for the values of the Rayleigh number ($Ra = 10^7$ and $Ra = 10^8$) are presented in tab. 4.

Table 4. Comparison of average Nusselt number values with literature

<table>
<thead>
<tr>
<th>Ra</th>
<th>Present</th>
<th>[35]</th>
<th>[36]</th>
<th>[37]</th>
<th>[38]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^7</td>
<td>16.33</td>
<td>16.62</td>
<td>16.79</td>
<td>16.07</td>
<td>15.92</td>
</tr>
<tr>
<td>10^8</td>
<td>29.99</td>
<td>31.52</td>
<td>30.50</td>
<td>31.33</td>
<td>28.97</td>
</tr>
</tbody>
</table>

Table 4 shows a good agreement between the results of our code and those proposed by Bilgen et al. [35], Dixit et al. [36], Bairi et al. [37], and Lankhorst [38].

In fig. 4 we successively present the variations of the vertical speed 4(a) and the variations of the temperature 4(b) at mid-height in the median plane of the cavity.

![Figure 4. Variation of the vertical velocity (a) and the temperature (b) as a function of X at mid-height of the cavity](image)

The values of speed are almost confused with those of experience. Furthermore, the temperature values show a good agreement with those of the experiment. The latter are slightly higher than those calculated numerically in the middle of the cavity.

Results and discussion

Figures 5 and 6 successively represent the temperature fields and the lines of currents inside a cubic cavity containing pure water in the two cases where the cavity is heated respectively by a vertical strip and another horizontal at the middle of one of the vertical walls.
The isothermal lines and the current lines (for Ra = 10^9) represented successively by figs. 5 and 6 are marked by a stagnant horizontal stratification inside the cavity, which means that the heat transfer takes place for the most part by convection. It is also seen that the gradients of temperature and velocity become increasingly steep near the vertical walls, which shows that most of the turbulent flow occurs along the vertical sides of the cavity.

The Nu̇_{av} along the cold wall is shown in figs. 7-9 for different Rayleigh numbers (10^7, 10^8, and 10^9), for different types and volume fractions of nanoparticles (0-0, 02-0.04, and 0.06) in water and for both configurations (horizontal/vertical heating strip).
Figure 7. Variation of the mean Nusselt number as a function of the volume fractions of the metallic nanoparticles for $Ra = 10^7$ (a), $Ra = 10^8$ (b), and $Ra = 10^9$ (c)

Figure 8. Variation of the mean Nusselt number as a function of the volume fractions of the metal oxide nanoparticles for $Ra = 10^7$ (a), $Ra = 10^8$ (b), and $Ra = 10^9$ (c)

Figure 9. Variation in the mean Nusselt number as a function of the volume fractions of carbon-based nanoparticles for $Ra = 10^7$ (a), $Ra = 10^8$ (b), and $Ra = 10^9$ (c)

From the results, we can clearly see that the position of the heated partition considerably influences the heat exchange by natural convection. Indeed, figs. 7-9 show that the case where the heated partition is horizontal prevails and that the effect of this position is independent of the volume fraction of nanoparticles in water.

Figures 7-9 also show that the addition of the nanoparticles considerably improves the heat exchange by convection and that this improvement is all the greater as the number of Rayleigh is large. These figures represent an overview to compare the effect of the type of metal nanoparticles, metal oxide or carbon-based on turbulent natural convection.

We can also see that the carbon-based nanoparticles better intensify the heat exchange by convection and that their effect is even greater than the number of Rayleigh is large, in particular, for the graphene oxide nanoparticles. This shows that graphene oxide nanoparticles considerably improve the thermophysical properties of the fluid in turbulent conditions.
flow. Thus, their use in suspension in heat transfer fluids can considerably improve the design of heat exchange systems in view of better optimization of space requirements.

On the other hand, figs. 7 and 8 also show that nanoparticles of gold and zirconium dioxide slow down heat transfer by convective flow. This shows that the addition of these nanoparticles in water deteriorates its thermo-physical properties in turbulent flow.

Conclusions

This work has studied numerically the effects of different nanoparticles (metallic, metallic oxide, and carbon-based) and the effect of the position of the heated partition on the heat transfer rate for turbulent natural convection at interior of a cubic cavity. Numerical simulations which are carried out for different Rayleigh numbers (10^7, 10^8, and 10^9) for different volume fractions of the nanoparticles and for the two positions of the heated partition (horizontal/vertical) have shown as follows.

- The horizontal position of the heated partition considerably improves the heat transfer by natural convection much better than the vertical position (there is an increase in the Nusselt number of more than 20%) and that the effect of this position is independent of the volume fraction of nanoparticles in water.
- The use of carbon-based nanoparticles suspended in water makes it possible to bring about a much greater improvement in thermal performance compared to the use of metallic nanoparticles or metallic oxide. This is due to their high thermal conductivities and their low densities.
- The effect of the type and volume fraction of nanoparticles on the value of the Nusselt number is even greater than the number of Rayleigh is large.
- Unlike other nanoparticles, gold and zirconium dioxide nanoparticles deteriorate the thermo-physical properties of turbulent water, which slows thermal transfer by convective flow.

The results obtained clearly show that the use of nano-fluids based on carbon and in particular based on grapheme oxide and that the horizontal position of the heated partition can considerably influence the heat transfer by turbulent natural convection in this type of geometry.

Acknowledgment

I am grateful to all of those with whom I have had the pleasure to work during this and other related projects. Each of the members of my Dissertation Committee has provided me extensive personal and professional guidance and taught me a great deal about both scientific research and life in general. I would especially like to thank Dr. Sakina El Hamdani, the chairman of my committee. As my teacher and mentor, he has taught me more than I could ever give him credit for here.

I would like to thank my parents, whose love and guidance are with me in whatever I pursue. They are the ultimate role models. Most importantly, I wish to thank my loving and supportive wife, Naoual, and my son, Yahya, who provide unending inspiration.

Nomenclature

- C_p – specific heat at constant pressure, [Jkg$^{-1}$K$^{-1}$]
- g – gravity acceleration, [ms$^{-2}$]
- G_k – buoyancy term
- H – cavity height, [m]
- k – turbulent kinetic energy, [m2s$^{-2}$]
- K_{eff} – effective thermal conductivity
- Nu – Nusselt number
- p – pressure, [Pa]
- P_k – stress production
- Pr – Prandtl number
Ra – Rayleigh number
T – temperature, [K]
u, v, w – velocity components, [m/s]
x, y, z – cartesian co-ordinates, [m]

Greek symbols
α – thermal diffusivity, [m2/s$^{-1}$]
β – volumetric coefficient of thermal expansion, [K$^{-1}$]
ϵ – dissipation rate of turbulent kinetic energy
μ – dynamic viscosity, [Pa·s]
ρ – density, [kg/m3]

Subscripts
av – average
c – cold
f – fluid
h – hot
nf – nanofluid
p – nanoparticle
ref – reference
t – turbulent

References

[29] Selimefendigil, F., et al., Mixed convection in a lid-driven cavity filled with single and multiple walled carbon nanotubes nanofluid having an inner elliptic obstacle, Propulsion and Power Research, 8 (2018), 2, pp. 128-137
