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An isotropic structure modelled as a Timoshenko beam is considered for the op-
timal vibration control problem. The beam model to be controlled is described 
by a distributed parameter system with the selection of Timoshenko’s shear cor-
rection factor. Control of the vibrations is achieved through a function placed on 
the boundary conditions. The performance index which seeks to be minimized 
indicates that the goal is to minimize the magnitude of performance measure 
without consuming control effort in large quantities. It is shown how to derive 
the optimal control function using Pontryagin’s principle that turns the control 
problem into solving optimality system of PDE with terminal values. Wellposed-
ness of the optimal solution on the control set is presented and controllability of 
the problem is analyzed. Numerical simulations are given in terms of computer 
codes produced in MATLAB© in the forms of graphical and tables in order to 
show the applicability and effectiveness of the control acting on the boundary 
conditions.
Key words: boundary control, isotropic beam, Pontryagin’s principle 

Introduction

One of the most widely utilized beam models is the Timoshenko beam model, derived 
from the effects of shear deformation and rotary inertia [1, 2]. The use of the shear correction 
factor is one of the leading features of Timoshenko’s beam theory. Since Timoshenko’s beam 
theory was introduced in 1921, there have been many studies that define the shear correction 
factor or try to find its value. Cowper [3] derived shear coefficient value that match the same 
value as the Timoshenko’s value only when the Poisson’s ratio is zero. Kaneko reviewed var-
ious studies about the calculation of the shear coefficients for the Timoshenko’s beams [4]. 
According to his conclusion, the values included in the study of Timoshenko [2] are closest to 
experimental results. Hutchinson [5] came to the conclusion that Timoshenko’s value is best 
for long wavelengths, based on the data from his study, where he developed a set of solutions 
for the free circular cross-section beam. Leissa et al. [6] applied a Rayleigh-Ritz solution us-
ing Cowper’s shear coefficient to a circular cross-section and presented it by comparison with 
Timoshenko beam theory. Kennedy et al. [7] strain moments to solve the beam problem accord-
ing to the variables of displacement and rotation along the average thickness. Thanks to these 
strain moments, it is also possible to work with a non-isotropic and non-homogeneous beam 
KennedyTBT2011. 
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Modelling and analyzing of the physical system adequately is important, but controlling 
the vibrations in the beam by using control actuators is also important [8]. In an optimal control 
problem, control can be accomplished through a boundary condition on the system or through 
an internal force [9]. Boundary control is a way to control of a distributed parameter system in 
which the control action is implemented to the system by means of its boundary conditions. 
Selection of boundary condition such as Dirichlet, Neumann or Robin leads to several types of 
boundary controls. Fattorini and Murphy [10] considered non-linear parabolic boundary control 
systems where control is applied by means of the Dirichlet boundary condition. Fattorini and 
Murphy [11] also presented Pontryagin’s principle for optimal control problems subject to Robin 
or Neumann boundary conditions. In Nowakowski [12], optimal control of a system governed by 
a parabolic equation with a control over a boundary determined as Neumann condition is investi-
gated. In the study, sufficient optimality conditions are reached by applying a dual dynamic pro-
gramming approach. Yildirim et al. [13] presented optimal boundary control of the Mindlin-type 
beam which is modelled according to Einstein’s causality principle that the dynamic behavior of 
the model must be of the same order with respect to both time and spatial parameters. Korpeoglu 
et al. [14] introduced the optimal vibration control of the second strain gradient theory-based 
beam which captures the size effects of the structures in micro and nanoscale by means of Pon-
tryagin’s principle. Yildirim and Kucuk [15] proposed optimal vibration control of a Timoshenko 
beam using active controlling with piezoelectric patch actuator via Pontryagin’s principle. 

In this paper, a vibration control strategy which is composed of boundary force for an 
isotropic beam is designed. Pontryagin’s principle is used to get the optimal control solutions. 
An adjoint variable is defined to reformulate the optimal control problem in terms of Hamil-
tonian function. The state equations, the adjoint equations, optimality conditions and terminal 
conditions are expressed in terms of Pontryagin’s Hamiltonian. The performance index seeks to 
minimize the magnitude of the performance measure that is defined as a dynamic responce the 
beam as well as the control input over the time interval. Numerical results are presented using 
computer simulation produced in MATLAB© to confirm that the control scheme is effective and 
applicable.

Since vibrations are undesirable conditions in a structure, control of the vibrations 
is a significant research area that needs to be studied. There are studies on vibration control 
and control strategies in the literature, but the feature of the study that recognizes as different 
from other studies is that vibration control is achieved by means of control action that takes 
place on the boundary. In addition, the beam is modeled as a PDE that includes fourth order 
derivatives in terms of both spatial co-ordinates and time that coincides with Einstein's cau-
sality. Besides, there is no study on the suppression of the vibrations with an application of 
boundary conditions for the beam modelled using Timoshenko’s shear correction factor via 
Pontryagin’s principle.

Mathematical model

 The equations of motion for an isotropic beam model [7] is given, with the notation 
in tab. 1, as follows: 

24 2 4 4

4 2 2 2 4
17 10 12 10 0

5 5
v v IEI A I

Ax t t x t
φ φ φ ρ φρ ρ

φ
∂ ∂ + ∂ + ∂ + − + = ∂ ∂ ∂ ∂ ∂ 

(1)

where x and t is the spatial and time variables at:

	
( ) ( ) ( ){ }, : 0, , 0, fx t x t tΦ = ∈ ∈
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Table 1. Parameters of the beam model (1)

 Symbol  Description 

E Young’s modulus

A Cross-sectional area

I Weighted second moment of area

v Poisson ratio

ρ Material density

𝓁 Length of the beam

ϕ(x, t) Beam displacement

The initial conditions for ϕ(x):
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3,0 ,    ,0 , ,0 ,    ,0t tt tttx x x x x x x xφ φ φ φ φ φ φ φ= = = = (2)

and the boundary conditions:

( ) ( ) ( ) ( ) ( )0, , 0, 0, ,xx xxt t t t p tφ φ φ φ= = = =  (3)

where p(t) is the control function be determined. 

Wellposedness and controllability 

Picard’s existence theorem [16] says that there is a solution for the equation system 
(1)-(3) in the class of analytic functions under the conditions:

	

( ) ( ) ( ) ( ) ( ) ( )

( )

2 1 2
0

4
2

2 2

0, , 0, , 0, ,    1, 2,3

, , , ,    0,1,..., 4

f i

i i

i i

p t L t x H x L i

L i
t x t x

φ φ

φ φ φφ

∈ ∈ ∈ =

∂ ∂ ∂
∈ =

∂ ∂ ∂ ∂

 



where L2(S) denote the class of square integrable functions with a usual inner product and norm 
in the domain S. In addition, eqs. (1)-(3) can be written as ODE form and therefore, eqs. (1)-(3) 
have a solution under favour of linear Picard-Lindelof existence-uniqueness theorem. Consider 
the following Lemma 1 based on energy method for the uniqueness of the solution eqs. (1)-(3). 

Lemma 1. The solution the problem (1)-(3) is unique. 
Proof 1. Assume that the problem has two solution ϕ1(x, t) ≠ ϕ2(x, t) and set the differ-

ence function φ(x, t) = ϕ1(x, t) – ϕ2(x, t) for the isotropic beam: 
217 10 12 10 0,    0 ,    0

5 5xxxx tt ttxx tttt f
v v IEI A I t t x

A
ρϕ ρ ϕ ρ ϕ ϕ+ +  + − + = ≤ ≤ ≤ ≤ 

 
 (4)

with zero initial conditions

( ) ( ) ( ) ( ),0 ,0 ,0 ,0 0t tt tttx x x xϕ ϕ ϕ ϕ= = = = (5)

and the following boundary conditions

( ) ( ) ( ) ( )0, , 0, , 0xx xxt t t tϕ ϕ ϕ ϕ= = = =  (6)

when φ(x, t) is shown to be equal to zero in S, the uniqueness of the solution is get. Examining 
the energy integral:
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( )
2 2

2 2 2
2

0

1 12 10 17 10 d
2 5 5

l

tt ttt tt
v I vE t A I x

A x
ρρ ϕ ϕ ρ ϕ

 + + ∂  = + −   ∂   
∫ (7)

and differentiating E(t) with respect to t:

( ) 2

0
2

0

d 12 10 17 10 d
d 5 5

12 10 17 10 d
5 5

tt ttt ttt tttt ttxx ttt

tt tttt xt ttxx ttt

E t v I vA I x
t A

v I vA I x
A

ρρ ϕ ϕ ϕ ϕ ρ ϕ ϕ

ρρ ϕ ϕ ρ ϕ ϕ ϕ

 + +  = + −  
   

 + +  = + −  
   

∫

∫





(8)

Considering eq. (4) with boundary conditions (6), dE(t)/dt is a negative quantity. 
Therefore, E(t) is decreasing.

Observe that E(0) = 0 and E(t) ≥ 0 to conclude that E(t) is constantly 0. As a result,  
φ(x, t) is identically equal to zero in S, which completes the proof.

Then carrying out the energy method, the problem is well-posed. Based on the unique 
solution of the beam system, it is determined that the control function is also unique. For this 
reason, the system being studied has a unique solution and a unique control function, so the 
system is observable. Briefly, the system defined by eqs. (1)-(3) is controllable according to the 
Hilbert uniqueness method [17, 18]. 

Optimal control problem

The objective of the optimal control problem is to determine the optimal con-
trol function p°(t) that will cause the process to satisfy the the governing eq. (1) subject to  
eqs. (2) and (3) and at the same time minimizes the performance index. Performance index is 
identified by taking the sum of the weighted dynamic response of the beam and the consump-
tion of the control voltage spent during the control period. A control that satisfies the control 
constraints during the time interval [0, tf] is called an admissible control and the set of admissi-
ble controls by Pad is given: 

( ) ( ) ( ){ }2
0 0| 0, ,  ,  is a constantad fP p t p L t p t a a= ∈ ≤ < ∞ (9)

and the performance index over the time interval 0 ≤ t ≤ tf

[ ] ( ) ( )2 2 2
1 2 3

0 0

, , , d ( ) d
ft

f t fp x t x t x p t tµφ µφ µφ = + + ∫ ∫


J (10)

where µ1, µ2, and µ3 are weight coefficients satisfying µ1 + µ2 ≠ 0, µ1, µ2 ≥ 0, µ3 > 0. The perfor-
mance index is selected as a sum of two integrals. The first integral is the dynamic response of 
the beam and seeks to minimize the vibrations at the terminal time t = tf. The second integral is 
the penalty function that minimizes the magnitude of the control over the range 0 ≤ t ≤ tf. The 
optimal control problem is indicated:

( )
( )

( )min
ad

o
p t P

p t p t
∈

   =   J J (11)

subject to the system (1)-(3).
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Boundary control characterization

In order to illustrate the Pontryagin’s approach for determining the optimal control 
function, let us define the adjoint system with adjoint variable v corresponding to (1)-(3):

217 10 12 10 0
5 5xxxx tt ttxx tttt

v v IEIv Av Iv v
A
ρρ ρ+ +  + − + = 

 
(12)

with boundary conditions

( ) ( ) ( ) ( )0, , 0, 0, , 0xx xxv t v t v t v t= = = =  (13)

and terminal conditions

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )
( )

2

1

2

2

17 10 12 10, , , 2 ,
5 5

17 10 12 10, , , 2 ,
5 5

, 0

, 0

t f xxt f ttt f f

f xx f tt f t f

t f

f

v v IAv x t Iv x t v x t x t
A

v v IAv x t Iv x t v x t x t
A

v x t

v x t

ρρ ρ µ φ

ρρ ρ µ φ

+ +  − + = 
 

+ +  − + + = 
 

=

=

(14)

Optimal control problem is reformulated using Pontryagin’s principle, which asserts 
that a necessary condition for optimal control function that minimizes the Pontryagin’s Ham-
iltonian. Since the Hamiltonian, defined in section Derivation of the Pontryagin's principle, 
satisfies:

	
( ) ( ) ( )

2

2, , , 0 and 0o o ot t p t v t
p p

φ∂ ∂  = > ∂ ∂
 

the Pontryagin’s principle is also sufficient to be an optimal solution. Pontryagin’s principle 
gives a clear statement for the optimal control function by relating the state variable and the 
optimal control function implicitly. In this context, Pontryagin’s principle is applicable to the 
optimal control problem (11) as described in the next section. 

Derivation of the Pontryagin’s principle 

Theorem 1. If the optimal control function po(t) ∈ Pad, which causes the system  
(1)-(3) minimizes the Hamiltonian so that:

( ) ( ) ( ) ( )2
3; ,t v p EIS t p t p tµ= − + (15)

where 
( ) ( ) ( ), 0,x xS t v t v t= − (16)

then 

( ) ( )op p≤J J (17)

Proof 2. Let us form an operator:

( )
217 10 12 10

5 5xxxx tt ttxx tttt
v v IEI A I

A
ρφ φ ρ φ ρ φ φ+ +  Γ = + − +  

 
(18)
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and differences:
( ) ( ), ,ox t x tφ φ φ∆ = − (19)

( ) ( )op p t p t∆ = − (20)
Evaluating the operator and differences gives:

( ) 0φΓ ∆ = (21)
with the boundary conditions

( ) ( ) ( ) ( ) ( )0, , 0, 0, ,xx xxt t t t p tφ φ φ φ∆ = ∆ = ∆ = ∆ = ∆  (22)

and initial conditions:

( ) ( ) ( ) ( ),0 ,0 0, ,0 ,0 0t tt tttx x x xφ φ φ φ∆ = ∆ = ∆ = ∆ = (23)

The following relation yields:

( ) ( )( ) ( ) ( )

( ) ( )

0 0 0 0 I II

2

I
V

I
I

I

17 10d d  +
5

12 10
5

f ft t

xxxx xxxx ttxx ttxx

tttt tttt tt tt

vv v t x EI v v I v v

v I v v A v v
A

φ φ φ φ ρ φ φ

ρ φ φ ρ φ φ

 
 

+ + 
 


 
 + ∆ Γ − Γ ∆ = ∆ − ∆ ∆ −∆ +   

    

+   ∆ − ∆ ∆ − ∆













∫ ∫ ∫ ∫
 











 



d d 0t x
   =  

 

(24)

Carrying out integration by parts for I, II, III, IV and using the terminal conditions  
eq. (14) gives:

( ) ( ) ( ) ( ) ( )
0 0 0

I d d  , , 0, 0, d
f ft t

xxxx xxxx xx x xx xEI v v t x EI t v t t v t tφ φ φ φ = ∆ − ∆ = ∆ −∆ ∫ ∫ ∫


  (25)

( )

( ) ( ) ( ) ( )
0 0

0

17 10II d d
5

17 10 , , , ,  d
5

ft

ttxx ttxx

xx f t f xxt f f

v I v v t x

v I v x t x t v x t x t x

ρ φ φ

ρ φ φ

+
= ∆ −∆ =

+  = ∆ − ∆ 

∫ ∫

∫





(26)

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

0 0

0

12 10 12 10III d

,

.d
5 5

, , , , , d. , ,

ft

tttt tttt

ttt f f tt f t f t f tt f f ttt f

v I v Iv v t x
A A

v x t x t v x t x t v x t x t v x t x t x

ρ ρφ φ

φ φ φ φ

+ +   = ∆ − ∆ =   
   

 ∆ − ∆ + ∆ − ∆ 

∫ ∫

∫





(27)

( ) ( ) ( ) ( ) ( ){ }
0 0 0

IV d d , , , , d
ft

tt tt f t f t f fA v v t x A x t v x t x t v x t xρ φ φ ρ φ φ= ∆ − ∆ = ∆ −∆∫ ∫ ∫
 

(28)
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Collecting these four results yields:

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

  d d , , 0, 0, d
f ft t

x xx x xxv v t x EI v t t v t t tφ φ φ φ   ∆ Γ − Γ ∆ = ∆ − ∆ +   ∫ ∫ ∫


 

( ) ( ) ( ) ( ){ } ( ) ( ){
0

17 10, , , , , ,
5f t f t f f xx f t f

vA x t v x t x t v x t I v x t x tρ φ φ ρ φ++ ∆ − ∆ + ∆ −∫


( ) ( )} ( ) ( ) ( ) ( )
212 10, , { , , , ,

5xxt f f ttt f f tt f t f
v Iv x t x t v x t x t v x t x t

A
ρφ φ φ+  − ∆ + ∆ − ∆ + 

 

( ) ( ) ( ) ( )}, , , , d 0t f tt f f ttt fv x t x t v x t x t xφ φ + ∆ − ∆ =
(29)

Bringing into focus on the deviations of performance index:

( ) ( ) ( )

( ) ( ) ] [ ( ) ( ){ } ( ) ( )
2 2 22 2 2

1 2 3
0 0

, , , , d d
f

o

o o o
t

f f t f t f

p p p

x t x t x t x t x p t p t tµ φ φφ µ φ µ

∆ = −

   = − + − + −      ∫∫


J J J

(30)

The values of ϕ2(x, tf) and ϕ2
 t(x, tf) around ϕo2 (x, tf) and ϕt

o2 (x, tf) by Taylor Series ex-
pansion, respectively:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

2

2
1

2
2

, , 2 , ,

, , 2 , ,

f f f

t f t f t t f

o o

o o

x t x t x t x t r

x t x t x t x t r

φ φ φ

φ φφ

φ

φ

− = ∆ +

− = ∆ +
(31)

in which: 
2 2

1 22( ) ... 0,    2( ) ... 0tr rφ φ= ∆ + > = ∆ + > (32)
Substituting eq. (31) into eq. (30):

( ) ( ) ( ) ] [ ( ) ( ){ }

( ) ( )
2

1 1 2 2
0

2
3

0

2 , , 2 , , d

d
f

f f t t
o o o o

o

f f

t

p x t x t r x t x t r x

p t p t t

µ φ φ µ φ φ

µ

 ∆ = ∆ + + ∆ + + 

 + −  

∫

∫



J

(33)

Applying the fact 2µ1r1 + 2µ2 r2 ≥ 0 gives:

( ) ( ){ } ( ) ( ) ( ){ }2

3
0 0

2 0, , d d 0
f ft

x x
o

t

EI v t v t p t t p t p t tµ− ∆ + − ≥∫ ∫ (34)

Then Pontryagin’s Hamiltonian is of the form:
( ) ( ) ( ) ( )2

3; ,t v p EIS t p t p tµ= − + (35)
where S(t) = vx(l, t) – vx(0, t). 

Thus:

( ) ( )min ; , ; ,o ot v p t v p=  (36)
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yields

	 ( ) ( )op p≤J J

Simulations results and discussions

 The efficiency and competence of the boundary control algorithm introduced are 
simulated through computer codes produced in MATLAB©. Optimal solutions of the iso-
tropic beam for the case with terminal time tf = 5 seconds and weight coefficient µ3 = 10–2 
are shown in the simulations. The other weight coefficients µ1 and µ2 in the first integral of 
the performance index functional are considered as µ1 = µ2 = 1. The length of the isotropic 
beam is taken as 𝓁 = 1 m. The properties of the isotropic beam are taken as I = 1 ⋅ 10–7 m4,  
E = 3 ⋅ 109  N/m2, v = 0.3, A = 2 ⋅ 10–2 m2, ρ = 2 ⋅ 105 m2. The values of the velocity and displace-
ment of the beam are calculated at the exact middle point. The introduced control algorithm is 
valid even if the coefficients are chosen as desired. The response of the isotropic beam is ana-
lyzed subject to the initial conditions:

( ) ( ) ( ) ( ) ( )
( ) ( )

,0 0,    ,0 2sin ,    ,0 2cos

    ,0 2sin
t tt

ttt

x x x x x

x x

φ φ φ

φ

= = π = π

= π
(37)

Figure 3. Optimal control 
solution for the case with 
tf = 5 and different weight 
coefficients µ3
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Figure 1. Controlled and uncontrolled 
displacements

Figure 2. Controlled and uncontrolled velocities  
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The controlled/uncontrolled displacements at x = 0.5 are shown in fig. 1. It is observed 
that the vibrations are close to zero at the terminal time. The controlled/uncontrolled velocities 
are also given in fig. 2. Besides, in fig. 3, optimal control function p(t) is presented for different 
µs. These results, which are also seen with the help of the figures, show how effective the con-
trol algorithm is using minimum level of control. 

The dynamic responce of the beam which is defined as the performance measure of 
the beam in case of µ1 = 1, µ2 = 1, and µ3 = 0: 

( ) ( ) ( )
1

2 2

0

, , d  f t fx t x t xφ φ φ = + ∫J (38)

and the penalty function that minimizes the magnitude of the control over (0, tf):

( ) 2

0

( ) d
ft

p p t t= ∫J (39)

Choosing the weight coefficients µ1, µ2, and µ3 determines the importance of the per-
formance measure and penalty function. Table 2 shows the values of J(ϕ) and J(p). for differ-
ent cases of µ1, µ2, and µ3. 

 As it is examined from the tab. 2 that 
as the weight factor µ3 increases, the dy-
namic response of the beam increases while 
the corresponding control expenditure de-
creases. The data in the table presented and 
figures indicate that vibrations of the beam 
are damped out with the proposed boundary 
control algorithm. 

Conclusion

 In this study, the vibration control 
problem for the isotropic beam modelled 

with Timoshenko’s shear correction factor is considered. A function p(t) that placed on the 
boundary conditions is used as an control actuator. Pontryagin’s principle is used to get the 
optimal control solutions. Numerical simulations for the control of the beam are provided in 
terms of computer codes in MATLAB©. The results presented in figures and table indicates 
that the boundary control scheme is effective in suppressing vibration of the beam . Also, it is 
important in terms of being applicable to different types of structures as undesirable vibrations 
can be suppressed with minimum control cost with the boundary control algorithm introduced 
in this study.
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