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This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, 
though its solitary solutions have been deeply studied, its periodic solution was 
rarely revealed due to its strong non-linearity. Now the condition is completely 
changed, He’s frequency formulation provides with a universal tool to having a 
deep insight into the periodic property of the fractal Phi-4 equation. The two-scale 
transform is used to convert approximately the fractal Phi-4 equation a differential 
model, and a criterion is suggested for the existence of a periodic solution of the 
equation, the effect of fractal orders on the periodic property is also elucidated.
Key words: fractal calculus, periodic solution, solitary wave,  

Duffing oscillator, two-scale mathematics 

Introduction 

This paper studies the following fractal modification of the Phi-4 equation [1-4]:
2 2 2 3 0, 0 1, 0 1t xD u D u m u wuα β α β− + + = < ≤ < ≤ (1)

where m and w are constants, Dt
α and Dx

β are fractal derivatives with respect to t and x, respec-
tively. Their definitions are given [5, 6]:

0

0
0

00

( , ) ( , )
( , ) (1 ) lim

( )t t t t
t

u t x u t x
D u t x

t t
α

αα
− →∆
∆ ≠

−
= Γ +

− (2)

0

0
0

00

( , ) ( , )
( , ) (1 ) lim

( )x x x x
x

u t x u t x
D u t x

x x
β

ββ
− →∆

∆ ≠

−
= Γ +

− (3)

The chain role works for the fractal derivatives:
2 = ( )t t tD D Dα α α (4)
2 = ( )x x xD D Dβ β β (5)

When α = β = 1, the classic Phi-4 equation is obtained: 
2 3 0tt xxu u m u wu− + + = (6)

The Phi-4 equation can model many non-linear phenomena arising in optics, thermal 
science, nanofluid, and non-linear vibration [1-4]. Much literature focused on its solitary solu-
tions, while its periodic solution was rarely studied. Furthermore, the traditional Phi-4 equation 
cannot figure out the effect of porous structure on the solution property, and a fractal modifica-
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tion is much needed. Now the fractal differential models can reveal many interesting properties 
which the traditional models cannot reveal. Now fractal calculus has witnessed various appli-
cations in various fields [7-20]. 

Two-scale transform 

The two-scale transform [21-23] is to convert eq. (1) on a small scale to an differential 
equation on a large-scale:

T tα= (7)

X xβ= (8)
We can convert eq. (1) into the following:

2 2
2 3

2 2 0u u m u wu
T X
∂ ∂

− + + =
∂ ∂

(9)

Introducing a complex variable ξ:
( , )= ( ), ( )u T X U c X vTξ ξ = − (10)

Equation (9) becomes:
2 2 2 2 3 0c v U c U m U wU′′ ′′− + + = (11)

where c and v are constants.
We assume the initial c onditions:

(0) , (0) 0U A U ′= = (12)

Periodic solution 

This section applies He’s frequency formulation [24-26] to figure out the periodic 
property of the fractal Phi-4 equation. We re-write eq. (11):

( ) 0U F U′′ + = (13)
where the prime implies the derivative with respect to ξ, F(U) is given:

2 3
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c v c

+
=

−
(14)

According to He’s frequency formulation [19, 20]:

2

2
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F U

=
′Ω (15)

where Ω is the frequency and A is the amplitude. He’s frequency formulation has been caught 
much attention due to its simplest solution process and relatively high accuracy [27-37]. 

It is easy to calculate the derivative of F(U) with respect to U:
2 2

2 2 2
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(16)

Using He’s frequency formulation:
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The criterion for the existence of a periodic solution:
2 2 2 0c v c− > (18)

or
1 or 1v v> < − (19)

In case:
2

2 2 2 1m
c v c

=
−

(20)

and

2 2 2

w
c v c

ε=
−

(21)

Equation (11) becomes the standard Duffing oscillator: 
3+ 0, (0) , (0) 0U U U U A Uε′′ ′+ = = = (22)

By the homotopy perturbation [38, 39] method or the variational iteration method, its 
frequency:

23= 1
4

AεΩ + (23)

The approximate periodic solution of eq. (11):

( )( ) cosU Aξ ξ ϕ= Ω + (24)

where φ is a constant.
In view of eq. (10):

( )( ) cosU Aξ ξ ϕ= Ω + (25)

By eqs. (7) and (8), we finally obtain the periodic solution of eq. (1):
( , ) cos ( )U t x A c x vtβ α ϕ = Ω − +  (26)
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Solution morphology

From eq. (26), we have:
1( , ) sin ( )U t x cvA t c x vt

t
α β αα ϕ−∂  = Ω Ω − + ∂

(28)

and
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(29)
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In case of α = β = 1, we have:

[ ]( , ) sin ( )U t x cvA c x vt∂
= Ω Ω − +

∂
(30)

[ ]( , ) sin ( )U t x cA c x vt
x

ϕ∂
= −Ω Ω − +

∂
(31)

This case leads to the standard periodic property. 
In case of α < 1 and β < 1, we have:

(0, )U x
t
∂

→ ∞
∂

(32)

( ,0)U t
x
∂

→ ∞
∂

(33)

Equation (32) sees an extremely large change of U at the initial time, while eq. (33) 
predicts an extremely large slope at x = 0. 

From aforementioned analysis, we can see that the fractal orders will greatly affect the 
solution morphology, see fig. 1 for the case A = m = w = 1, v = 2, and φ = 0.
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Figure 1. Solution morphology for different values of α and β 

Conclusions

In this paper, we use the Hira Tariq method to transform a FPDE to a FODE and it was 
very effective, however, FODE remains difficult to solve. Fortunately, there is He’s frequency 
effective method to solve it. As Dr. Ji-Huan He has been emphasized, the simpler is the better. 
In engineering applications, a fast and effective estimation of a nonlinear vibration problem 
is very needed, and He’s frequency formation becomes a universal tool for this purpose.
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