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A space spectral interpolation collocation method is proposed to study non-linear
reaction-diffusion systems with complex dynamics characters. A detailed solution
process is elucidated, and some pattern formations are given. The numerical re-
sults have a good agreement with theoretical ones. The method can be extended to
fractional calculus and fractal calculus.
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Introduction

Reaction diffusion systems are a class of parabolic PDE arising in physics, chemistry,
engineering, biology and ecology [1-9]. In this paper, we consider the following reaction-dif-
fusion system [5-6]:

ou =oViu+ f(u,v)
gt , (60 eQr>0 (1)
6_: =6,Vv+g(u,v)
with boundary conditions:
Ou ov
= =22 =0 2
8}’1 Q 8}’1 |(')Q ( )

where u(x, y, ) and v(x, y, f) are unknown functions, J, and d, — the diffusion coefficients,
V2= 3?/ox* + 0°/0y*, OQ — the boundary, f'and g the — functions of « and v.

Many approaches are used to solve reaction-diffusion systems. These methods include
the finite difference method [10], Galerkin finite element method [11], the best uniform rational
approximation [12], the variational iteration method [13, 14] and the homotopy perturbation
methods [15-17], the barycentric interpolation collocation method [18-20], and the reproducing
kernel method [21-25], etc.
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Description of the space spectral
interpolation collocation method

In this section, we use the n spectral differential matrix to solve system of eq. (1).
From [18], the interpolation function Zyu(x) of the discrete sequence u, u,,... uy can be written:

u(x) ~ Lyu(x) = >, Sy (x—x,) 3)

)
sin 7
Sy(x)= N
T X
= |tan| =
(5 Jen(3)
Iy — the interpolation operator such that for any a function u(x) defined on [0, 2n], u; = u(jh),

j=1,.., N, x;—x, = (j — m)h the interpolation space is span{S\(x —jh),j =1, 2,..., N}.
It is not difficult to derive simple expressions of the n™ derivatives of Lu(x) at

where

=jh:
N
L™ (x,) = u,Sy (x,—x,)
m=1

where

-----

is called the n spectral differential matrix [26].
Here we consider a finite spatial domain Q = [0, 2xn] x [0, 2xn]. We define equally
spaced NV, grid points over Q:

(xiayj) = (lh9]h)s la] = 1,2,3,...,N

where 4 =2n/N for a given finite natural number N € N. Using eq. (3), the interpolation function
Iyu(x, y, ) and Iyv(x, y, t) of function u(x, y, ) and v(x, y, ) can be written:

u(x, y,t) ~ Lyu(x, p,t) = ZZS (x=x)Sy(y =y u(x,,»,,t)
. 4)
v(x, y,8) ~ Tyv(x, y,1) ZZ (x=x)S, (¥ =y, W(x,, 1)

=

where u;; = u(x, y, 1), vi; = v(x, ¥, £), i,j = 2 ., N. Thus the following relations is hold at col-
location points (x,, v,):

u(x syq’t) 1 u(x :yqst) ZZS (.X x,‘)SN(yq_yi)u(xﬂyj’t)

NN (%)
V(X,,9,50) ~ Lv(x,, 3,0 = DY Sy (x, = x)Sy (v, = v V(% p;.0)
i=1 j=1
azu(x Yo N {
u(Z’O)(xpayqat) NINu(Z’O)(xpayqat) — :ZZIS](VZ)()CP _xi)SN(yq _yi)u(xiayjat)
=l =
82u(x ,yq, 1)

N N
ZZSN(xp _xi)SI(VZ)(yq _yi)u(xi’yj!t)

i=l j=1

0,2 0,2
u®(x,, .0 ~ L (x,,p,,1) =——5——
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82v(x ,y 1) L
— 5= S (x, — )8 (3, — V()

2,0 2,0
VA (x,,,.0) ~ L3 (x,,p,,1) = ——5——

.

©.2) 7502 82v(xp,yq, OV(x,5 20 & S e
v (xp’yq’t)~ NV (xpayq’t)_ _ZZ N(xp—xi) N (yq_yi)v(xiayjst)
i=1 j=1
Noting
T
U= (U Uy seees Uy s Uy s Uy sy Uy s Uy oy s eees Uy | ©)
T
V=V Vapseees Vas Vias Vagseees Vs s Vi oees Vo J
Therefore, the formula eq. (5) can be written as matrix forms:
u®? =D, u'? = Dy Pu, v3? = DO, v = Dy (7)
2.0, — N2 0.2) _ (2) 0,0) _
Dy u=Dy ®E,, D" =E,®D,’, Dy’ =E,QF, ®)

where Ey is N order unit matrix, ® — the Kronecker product of matrix.
Employing egs. (6) and (7), eq. (1) can be written:

olu| (6D 0 |lu| |fi(u,v) 9
arlv| | 0 &D||v] | fi(u,v) ©)
[t V] = [y seees Uy s Uy oo Uiy s Uy g s eees Uy s Vi oves Viggs Vig s oo Vi s Vi o oo Vay )

D=Dy" +Dy? =D ®E, +E, ® D’

Lf s v), fo )] =1 Gy vy fiGgy s Vi )s o (15955
Sopys vy )y f3 Qv )sees f3 (U V)]

We can get the numerical solution of system (1).

here

Numerical simulation

As an example, we consider [7-9]:
2——5Au+u(l u)— ld

a—:é'Av+ puy
u+a

u+a

(10)

—rv

where a, f5, and  are constants.
The equilibrium point of the non-diffusive system (10) is E* = (uo, vy), Where
L>(a+ Dy
ayr ., _opB-y-ay)
p-r " By

The Jacobian matrix 4, of the non-diffusive system (10) at E* reads:

Uy, =

av, u,

1_2“0_(u ra) Tt (1 a)f-(+a-a’)y _r
4, = ’ ’ = B-r B (11

(Lt()ll-[i‘())(;)2 uﬂzoa -7 (I-a)f-y 0
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The Turing bifurcation conditions of eq. (10) can be written:

2
(a+1)7/<ﬂ<1+a—a
-

SAB-af-(+a-a’)yT >48y(B-af -y B-y)
Taking the parameters o = 0.4,y = 0.6, f = 1,0, =1, d, = 1. Using the present method,

numerical solution and patterns of eq. (10) with different initial conditions are showed in figs.
1 and 2.
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Figure 1. Numerical solution and pattern of eq. (10) with initial condition v(x, y, 0) =1,
u(x, y, 0) = e =007+ 0-0%5in £ 20 (x — 0.4)* + (y — 0.4)2]}

Conclusion

This paper proposes a new numerical method called as the space spectral interpolation
collocation method to investigate a class of reaction-diffusion systems with complex dynamics
characters. Numerical results show some interesting pattern dynamic behaviors, and our results
are consistent with theoretical results given in [7-9], showing the reliability of the numerical
technique, which can be easily extended to fractal reaction-diffusion system [27-33]:
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Figure 2. Numerical solution and pattern of eq. (10) with initial condition v(x, y, 0) =1,
u(x, y, 0) = e 21e-042+0-00g5n £ 20[(x — 0.4) + (y — 0.4)?

ou

P =6V*U+ f(u,v)
o y (12)
6t—ﬂ=§2V v+g(u,v)

where 2/0t“ is the fractal derivative, V?* = 0%/0x** + 0°/0)*".
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