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Introduction 

The analysis of propagation of the pressure waves in a mixture liquid with gas bub-
bles is one of the most important problems in nature, mathematical physics, and engineering. 
The Kudryashov-Sinelshchikov (KS) modeled a more general non-linear PDE to explain the 
pressure waves in a mixture liquid and gas bubbles based on the viscosity of liquid and heat 
transmission [1, 2]. The KS equation is known: 

 ( ) ( ) = 0t x xxx xx x x xx xx x xu uu u uu u u u uu           (1) 

where u is density and models heat transfer and viscosity, and γ, ε, α, λ, and δ are real parame-
ters determining pressure waves in the liquid with gas bubbles taking into account the heat 
transfer and viscosity. In eq. (1), if ε = α = λ = δ = 0, then:  

 = 0t x xxxu uu u   (2) 

is known as the Korteweg-de Vries equation characterizing pressure waves in gas-liquid mix-
ture. Taking ε = α = δ = 0 in eq. (1), one gets Korteweg-de Vries-Burgers equation [3]:  

 = 0t x xxx xxu uu u u     (3) 

Several methods are used and applied to obtain traveling and oscillating wave solu-
tions. The G′/G-polynomial expansion method [4], modification of truncated expansion meth-
od applied [5], Lie symmetry analysis [6, 7], F-expansion method and its improved method 
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[8, 9], Riccati-Bernoulli sub-ODE method [10], the method of simplest equation [11, 12], 
generalized Kudryashov method [13, 14], the approach of dynamical systems [15], Bernoulli 
sub-equation function method [16, 17], modified method of simplest equation [18, 19], Ex-
pansion function method [20], sine-Gordon expansion method [21], Bifurcation method, im-
proved F-expansion method and modified exp-function method [22-24], solutions obtained 
from a generalized Korteweg-de Vries equation [25], radial basis function method [26], Lo- 
ng wave limit method [27], and modified mathematical method [28]. 

Bernoulli sub-equation function method  

Bernoulli sub-equation function method (BSEFM) is outlined in the succeeding 
steps. 

Step 1. Consider the following non-linear PDE with u = u(x, t): 

 ( , , , , ) = 0x t xt xxP u u u u  (4) 
set  
 ( , ) = ( ), =u x t U kx ct    (5) 

where k and c are real non-zero constants. By substituting eq. (5) into eq. (4), then the follow-
ing ODE is obtained: 

 ( , , , ) = 0N U U U   (6) 

where = ( ),U U   d= ,
d
U

U


  
2

2
d= , .
d

U
U


  

Step 2. Solution of eq. (6) is assumed to be: 

 2
0 1 2

=0
( ) = =

n
i n

i n

i

U a F a a F a F a F      (7) 

where  

 = , 0, 0, {0,1}MF bF dF b d M       (8) 

where ( )F   is well known Bernoulli differential equation. Also, b, d, and ai with 0na   
should be determined later. Substituting eqs. (8) and (7) into eq. (6), one immediately gets:  

 1 0[ ( )] = ( ) ( ) = 0F F F
          

By balancing principles, one starts getting a formula between n and M by comparing 
the highest order derivatives with highest power of non-linear terms in eq. (6). Let the coeffi-
cients of [ ( )]F   be equal zero. Then one gets: 

 = 0, = 0, ,i i   (9) 

By solving eq. (9) with a computerized program, one gets ia  with = 0,1, ,i  . 
Step 3. It is trivial that solution to Bernoulli differential eq. (8) are:  

1
1

( 1)( ) = , ,
e

M

b M

d E
F b d

b 
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1
1(1 )1 ( 1) tanh

2( ) , = ,
(1 )1 tanh

2

Mb M
E E

F b d E
b M






   
      

  
       

 

Kudryashov-Sinelshchikov equation solved by BSEFM 

In this section, BSEFM is effectively applied to KS equation to find some new com-
plex and real exponential solutions. Firstly, by applying eq. (5) to eq. (1), one right away gets:  

3 3 3 2 2 2( ) ( ( ) = 0cU kUU k U k UU U U k U U k U k UU U                        (10) 

where U, U′, U″, and U‴  are assumed to be zero at initial points. After integrating eq. (10), 
one gets:  

 
3

2 3 3 2 2 2 = 0
2 2
k k

cU U k U k UU U k U k UU
 

              (11) 

By applying balance principle in eq. (11), then one reads relationship between n and 
M as:  
 2 = 2M n   (12) 

From eq. (12), according to the values of M and n the following cases are analyzed. 
Case 1. If = 2M  and = 2n  in eq. (12), then eq. (7) becomes: 

 
2 2 2 3

0 1 2 1 1 2 2
2 2 2 3 2 2 3 2 2

1 1 1 2 2 4

, 2 2

3 2 4 10 6

U a a F a F U a bF a dF a bF a dF

U b a F bda F d a F b a F bda F d a F

      

      
 (13) 

 where each of b, d, and a2 are non-zero. Putting eq. (13) into eq. (11), a system of algebraic 
equation is produced. By solving obtained system by computerized computations, then exact 
solutions are derived as subcases indicated below.  

Case 1.1. For b d , then the following coefficients are obtained.  
2 2 3/2

22 2 2 2
1 2

2
3/2 3/2 3

2 2 3 5/22 2
2 2

22
0 2

2 2
3/2 3/2 3

2 2 5/22 2
2 2

2
2

16= , = 1, =
4 2

4024
= 3 , = , = 0, =

2 16

4040
=

16

b a a a b a b a
a k

a

ba ba
b a b a

ba a
a c

a a

a a
ba b a

a

     




 
 

   
  

 
 

 


    

  




  

(14) 

where 2
2= 32 .b a   Choosing suitable non-zero values of 2 ,a  ,b  ,d  and   in eq. (14), 

then following solution is obtained: 
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22[(6 2 ) ]

1.1 2[(6 2 ) ]
1 1( , ) = 1 e

2 1 e
i t x

i t x

i
u x t EE

EE


  

  


  


 (15) 

 
Figure 1. The 3-D graph for eq. (15), with EE = 0.6, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

 
Figure 2. Contour surfaces for eq. (15), with EE = 0.6, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

 
Figure 3. The 2-D graph for eq. (15), with EE = 0.6, –10 < x < 10, t = 0.2 



Baskonus, H. M
 

Case 1.2. For b d , then the following coefficients are:  

 

2 2 4
0 2 1 2

2
22

2
2

1 3, = 0, = 1, = (4 ), =
4 2

12(4 ) 1, = (10 3 )
2

a b a a k c b b a b

b a
b b a

a

  


  

  


  

 (16) 

By determining non-zero values of 2 ,a  ,b  ,d  and   from eq. (16), then the follow-
ing real exponential solution is: 

 

 
1.2 29

2

1 1( , ) =
4

2 e
t

x

u x t

EE






 (17) 

 
Figure 4. The 3-D and 2-D graphs for (17), with EE = 0.4, –10 < x < 10, –10 < t < 10, t = 0.2 

(for color image see journal web site) 

Case 1.3. Coefficients is given bellow is also generated where :b d   

 

2 2 3/2
2 2 2 22 2

0 1
2 2

3/2 3/2 3
2 2 3 5/22 2

2 2 3/22 2
2 2 2

2 2
2 2

3/2 3/2 3
2 2 5/22 2
2 2

2
2

3
, = , = 1, =

8 4 2

4024
16, =

16 2

4040

16

b a a ba ab a b a
a a k

a a

ba ba
b a b a

a b a b a
c

a a

a a
ba b a

a

      


 

 
 

   


 
 

 


   


   
  



   



 (18) 

where 2
2= 32 .b a    For given suitable values of a2, b, d, and   in eq. (18), then one 

gets solution:  

 
   

1.3 2 11 216 24 87216 24 87 144144

9 3 87 3 9 87( , )
24

4 2 e2 e
i t xi t x

i i
u x t

EEEE
    

  
  

  
    

 (19) 
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Figure 5. The 3-D graph for eq. (19), with EE = 1.2, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

  
Figure 6. Contour surfaces for eq. (19), with EE = 1.2, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

  
Figure 7. The 2-D graph for eq. (19), with EE = 1.2, –10 < x < 10, t = 0.6 
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Case 2. If one picks = 3M  and = 4n  in eq. (12), then eq. (7) reads: 

 

2 3 4
0 1 2 3 4

3 2 4 3 5 4 6
1 1 2 2 3 3 4 4

2 3 2 5 2 2 4 2 6 2 3
1 1 1 2 2 2 3

5 2 7 2 4 6 2 8
3 3 4 4 4

2 2 3 3 4 4

4 3 4 12 8 9

24 15 16 40 24

U a a F a F a F a F

U a bF a dF a bF a dF a bF a dF a bF a dF

U b Fa bdF a d F a b F a bdF a d F a b F a

bdF a d F a b F a bdF a d F a

    

        

        

    

 (20) 

where each of b, d, and 4a  are non-zero. Substituting eq. (20) into eq. (11) and if obtained 
system is evaluated by computerized computations, then exact solutions are derived in the fol-
lowing subcases. 

Case 2.1. For ,b d  from the previous, the following new coefficients are: 

 

2
4 4

0 2 2

3 1
4

3
0, = 0, = , =

8 3 4
5 4 3, = , = 3 , = 0, = 0

i a i a
a a k c

i
b a a

a

 



 
  

  

 

  

 (21) 

by determining non-zero values of γ, δ, ε, d, and a4, then one finds another complex solution: 

 2.1 234
2 4

4( , ) =

e
it ix

i

u x t

i EE

 
 

 
 
   

 (22) 

  
Figure 8. The 3-D graph for eq. (22), with EE = 0.6, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

Case 2.2. With ,b d  some new coefficients are: 

 

2
4

3 1 0 22 2 2 2 3 2 2
4 4

2 2 2 2 3 2 2 2 3 3 2 3
4 4 4 4

12 43 , = 0, = 0, = , = , =
24 8 3

5 4, = , =
4(24 ) 24

i a
a a a a k

a a

i
c b

a a a a

 
 

     

  


        

  


 
 

 

where 3/2 3 5/2 5/2 5/2
4 4= 24 3 3 ,i a i a      by taking suitable positive values of γ, δ, ε, d, 

and a4, then one gets following solution:  
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Figure 9. The 2-D graph for eq. (22), with EE = 0.6, –10 < x < 10, t = 0.4 

 2.2 2 33 44 2 42 4

4 8( , ) = 4

ee
it ixit ix ii

i
u x t

i EEi EE

        

  
  
      

 (23) 

  
Figure 10. The 3-D graph for eq. (23), with EE = 0.5, –5 x < 5, –5 < t < 5 

(for color image see journal web site) 

  
Figure 11. The 2-D graph for eq. (23), with EE = 0.5, –5 x < 5, t = 0.4 
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Case 2.3. When b d , then another coefficients are found: 

 
2

3 2 1 0 2
123 , = 0, = 0, = 0, = , =

(12 ) 8 3
a a a a k

 
 

   
  


 

2 3

2 2 2 2
4 4

3 12 5 4 3, = , =
4 ( 12 ) (12 ) (12 )

c b
a a

    


         

 


   
 

where 2
4= (12 ) .a     Picking suitable positive values for γ, δ, ε, d, and 4 0a  , then 

the following solution appears: 

 2.3 2
3 1 3 1 234
23 2 23 4 3

12 4( , ) =
23

23 e
3

i i t i x

u x t

i EE

 
   
 


 
 
 
  

 (24) 

  
Figure 12. The 3-D graph for eq. (24), with EE = 1.2, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

  
Figure 13. The 2-D graph for eq. (24), with EE = 1.2, –10 < x < 10, t = 1.4 
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Case 2.4. If ,b d then coefficients are:  

 

2
44 4

0 1 2 3

2 3/2 3/2
44

2
4 4

63 , = , = 0, = , = 0, =
5 5 4 3

11 5 25, = , = , =
40 3 10 3 4 3 2

i ab a ba
a a a a k

ib a iib a
c

b a b a


 

 
  

 

  

 

From the previous, by picking positive γ, ε, a4, b, and d  then following solution is 
occurred:  

 2.4 2
22 5 3 2 35 3 2 3

4 4 24( , ) =
5

5 1 e1 e

it ixit ix

u x t

EEEE

          

 
  
     

 (25) 

  
Figure 14. The 3-D graph for eq. (25), with EE = 0.6, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

  
Figure 15. The 2-D graph for eq. (25), with EE = 0.6, –10 < x < 10, t = 0.5 

Case 2.5. If b d , coefficients of algebraic equations is: 

 

42
0 4 1 2 4 3

2 3/2 3/2
4 44

, = 0, = 2 , = 0, =
2 3

5
, = , = , = 3

4 3 8 3 2 3

ib a
a b a a a ba a

i a ib aib a
k c
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By choosing 0,   0,   4 0,a   0,b   and 0,d   then following solution is ob-
tained: 

 2.5 2
22 3 2 33 2 3

1 2( , ) = 1

1 e1 e

it ixit ix

u x t

EEEE

          

 
  
     

 (26) 

Solution 2.5( , )u x t  is plotted in 3-D, 2-D and its contour surfaces are given.  

  
Figure 16. The 3-D graph for u2.5 (x, t), with EE = 0.4, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

  
Figure 17. The 2-D graph for u2.5 (x, t), with EE = 0.4, –10 < x < 10, t = 3  

Case 3. If = 4M  and = 6n  in eq. (12), then eq. (7) becomes: 

 

2 3 4 5 6
0 1 2 3 4 5 6

4 2 5 3 6
1 1 2 2 3 3

4 7 5 8 6 9
4 4 5 5 6 6

2 4 2 7 2 2 5 2 8 2 3
1 1 1 2 2 2 3
6 2 9

3 3 4

2 2 3 3

4 4 5 5 6 6

5 4 4 14 10 9

27 18 16

U a a F a F a F a F a F a F

U a bF a dF a bF a dF a bF a dF

a bF a dF a bF a dF a bF a dF

U a b F a bdF a d F a b F a bdF a d F a b F

a bdF a d F a

      

       

     

        

   2 4 7 2 10 2 5 8
4 4 5 5

2 11 6 9 2 9 2 12
5 6 6 6 6

44 28 25 65

40 36 54 36 54

b F a bdF a d F a b F a bdF

a d F a bdF a bdF a d F a d F

    

    

(27) 

where each of b, d, and 6a  are not zero. Substituting eq. (27) into eq. (11) and solving system 
of generated algebraic equation, then the following five cases are occurred to be analyzed. 
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Case 3.1. For ,b d  then one gets the following coefficients: 

 
   

6
5 4 2 1 3 0

6 6

3 , = 0, = 0, = 0, = 0, = 0, = 0, = , =
3 6 3 6

1 13 6 2 6 , = 3 6 2 6
6 6

ai c
a a a a a a b d

i c i a i c a

 

   

   

    

 

where k, c, γ, ε, and 6a  are non-zero parameters. With appropriate values of these parameters 
the following solution is obtained: 

 
   

2 1

6 6
3.1( , ) =1 1 e 2 1 e

i t x i t x

u x t EE EE

 
      

             (28) 

 
Figure 18. The 3-D graph for u3.1 (x, t), with EE = 1.5, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

  
Figure 19. The 2-D graph for u3.1 (x, t), with EE = 1.5, –10 < x < 10, t = 0.6 

Case 3.2. For ,b d then the following coefficients are obtained: 
2

6
5 4 2 1 3 02

0
2 2 2 2

0 6 6 0 6

0

543 , = 0, = 0, = 0, = 0, = 0, = , = , =
54

108 162 3 2 18 27
, =

18 3

d a
a a a a a b id c a

d a

d id i a a a d id i a a

da d

   

 
 


   

      
 

where 0 6= / ,a a  k, γ, d, a0, and a6 are non-zero parameters to be assigned so that solu-
tion is:  
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2

3 2 2
3.2 ( , ) = 2 e

2
i t xi

u x t EE


  

   
 

 (29) 

  
Figure 20. The 3-D graph for u3.2 (x, t), with EE = 1.5, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

  
Figure 21. The 2-D graph for u3.2 (x, t), with EE = 1.5, –10 < x < 10, t = 0.4 

Case 3.3. If ,b d  then one derives following new coefficients: 

 
 

2
5 4 2 1 0 63 , = 0, = 0, = 0, = 0, = 0, = 54

3 16 , = 6 12 , =
2 2 3 6

a a a a a a d

i c
i c d i c d b

 

   

 

     
 

Choosing appropriate non-zero values for k, c, d, γ, ε, and a0, then the following so-
lution is obtained:  

 
 

2
2 4
3

3.3
27 3 3( , ) = e
8 4 2

i t x

u x t i EE



  
  
 
 

 (30) 
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Figure 22. The 3-D graph for u3.3 (x, t), with EE = 1.4, –10 < x < 10, –10 < t < 10 

(for color image see journal web site) 

  
Figure 23. The 2-D graph for u3.3 (x, t), with EE = 0.5, –10 < x < 10, t = 0.6 

Case 3.4. In final case, the following new coefficients are appeared when :b d   

    2
6

0 2 1 5 4

1 3, = 6 2 , = 3 2 6 2 ,
12 43 6

0, = 0, = 0, = 6 , = 3 , = 0, = 0

i c
b d i c a c i c

a a a c a a

  

    

     

   

 

  
Figure 24. The 3-D graph for u3.4 (x, t), with EE = 1.8, –10 < x < 10, 10 < t < 10 

(for color image see journal web site) 
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By assigning suitable values for non-zero constants k, c, λ, γ, ε, and a3, then the new 
solution is: 

 
 

 
 

2

6
3.4

3 5 4 6 1 3( , ) = 4 6 e
4 2 2

i t x
i

u x t i i EE


   

     
 
 

 (31) 

  
Figure 25. The 2-D graph for u3.4 (x, t), with EE = 1.8, –10 < x < 10, t = 0.6 

Conclusion and discussion  

The BSEFM is first time successfully applied to KS non-linear PDE. Several new 
exponentially exact solutions, traveling and oscillatory wave solutions are obtained compare 
to available literature. Taking advantage of the computer software, profiles of obtained new 
solutions are plotted in 2-D and 3-D. Moreover, contour surfaces are exhibited. New exact so-
lutions signify density, heat transfer and viscosity of liquids while generated coefficients de-
noted for compression of waves in liquid with gas-bubbles. It is seen that BSEFM is quite ef-
fective and reliable to solve non-linear differential equations. 
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