THE PIECEWISE REPRODUCING KERNEL METHOD FOR THE TIME VARIABLE FRACTIONAL ORDER ADVECTION-REACTION-DIFFUSION EQUATIONS

by

Dan-Dan DAIa,b, Ting-Ting BANa, Yu-Lan WANGa*, and Wei ZHANGc

a Department of Mathematics, Inner Mongolia University of Technology, Hohhot, China
b Institute of Physics, Jining Normal University, Jining, Inner Mongolia, China
c Institute of Economics and Management, Jining Normal University, Jining, Inner Mongolia, China

Original scientific paper
https://doi.org/10.2298/TSCI200302021D

This paper structures some new reproductive kernel spaces based on Legendre polynomials to solve time variable order fractional advection-reaction-diffusion equations. Some examples are given to show the effectiveness and reliability of the method.

Key words: advection-reaction-diffusion equation, variable fractional derivative, piecewise reproducing kernel method, reproducing kernel space

Introduction

In this paper, we consider the following time-fractional advection-reaction-diffusion equation:

\[
\begin{align*}
D_t^{\alpha(x,t)}u(x,t) + \beta_1(x,t)\frac{\partial u(x,t)}{\partial x} + \beta_2\frac{\partial^2 u(x,t)}{\partial x^2} & = f(x,t), (x,t) \in \Omega = [0,1] \times [0,1] \\
u(x,0) & = \phi(x), 0 \leq x \leq 1 \\
u(0,t) & = \phi_1(t), u(1,t) = \phi_2(t), 0 \leq t \leq 1
\end{align*}
\]

(1)

where \(\alpha(x,t), \beta_1(x,t), \beta_2(x,t), f(x,t)\), are known functions, and \(D_t^{\alpha(x,t)}u(x,t)\) is the variable order Caputo derivative defined:

\[
D_t^{\alpha(x,t)}u(x,t) = \frac{1}{\Gamma(1-\alpha(x,t))} \int_0^t (t-\tau)^{-\alpha(x,t)} \frac{\partial u(x,\tau)}{\partial \tau} \, d\tau
\]

(2)

The time-fractional advection-reaction-diffusion equation [1-5] has wide applications in thermal science, chemical engineering, and mechanics. It is almost impossible to obtain an analytic solution of this equation. In recent years several numerical methods have been proposed, such as the variational iteration method and the homotopy perturbation method [6-11], the reproducing kernel method [12-15], etc. In previous work, the Taylor’s formula or Delta function was used to construct the reproducing kernel space [16-19], which has been proved to be an effective tool to solving various kinds of differential equations [20-25]. In this paper, we structure some new reproductive kernel spaces based on Legendre polynomials for numerical approach to time-fractional advection-reaction-diffusion equations.

*Corresponding author, e-mail: wylnei@163.com
Structing reproductive kernel space based on Legendre polynomials

The well-known Legendre polynomials is defined on the interval \([-1, 1]\) and its recurrence formula:

\[
\begin{align*}
 p_0(t) &= 1 \\
 p_n(t) &= \frac{1}{2^n n!} \frac{d^n}{dt^n} ((t^2 - 1)^n), \quad n = 1, 2, \ldots, t \in [-1, 1]
\end{align*}
\]

(3)

Let \(t = 2x - 1 \), we can get the following formulation:

\[
\begin{align*}
 p_0(x) &= 1 \\
 p_n(2x-1) &= \frac{1}{n!} \frac{d^n}{dx^n} ((x^2 - x)^n), \quad n = 1, 2, \ldots, x \in [0, 1]
\end{align*}
\]

(4)

The Legendre polynomials has following properties:

\[
\int \sqrt{2n+1} L_n(x) \sqrt{2m+1} L_m(x) dx = \delta_{mn}
\]

(5)

where \(L_n(x) = p_n(2x-1) \). The first nine terms of the polynomials of \((2n + 1)^{1/2} L_n(x)\) are listed in the tab. 1.

<table>
<thead>
<tr>
<th>Tab. 1. The first nine polynomials of ((2n + 1)^{1/2} L_n(x))</th>
<th>((2n + 1)^{1/2} L_n(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3^{1/2}(1 - 2x)</td>
</tr>
<tr>
<td>2</td>
<td>5^{1/2}(1 - 6x + 6x^2)</td>
</tr>
<tr>
<td>3</td>
<td>7^{1/2}(-1 + 12x - 30x^2 + 20x^3)</td>
</tr>
<tr>
<td>4</td>
<td>3(1 - 20x + 90x^2 - 140x^3 + 70x^4)</td>
</tr>
<tr>
<td>5</td>
<td>11^{1/2}(-1 + 30x - 210x^2 + 560x^3 - 630x^4 + 252x^5)</td>
</tr>
<tr>
<td>6</td>
<td>13^{1/2}(1 - 42x + 420x^2 - 1680x^3 + 3150x^4 - 2772x^5 + 924x^6)</td>
</tr>
<tr>
<td>7</td>
<td>15^{1/2}(-1 + 56x - 756x^2 + 4200x^3 - 11550x^4 + 16632x^5 - 12012x^6 + 3432x^7)</td>
</tr>
<tr>
<td>8</td>
<td>17^{1/2}(1 - 72x + 1260x^2 - 9240x^3 + 34650x^4 - 72072x^5 + 84084x^6 - 51480x^7 + 12870x^8)</td>
</tr>
</tbody>
</table>

Theorem 1. If

\[
\overline{H}_s = \text{Span} \left\{ L_n(x), \sqrt{5} L_n(x), \sqrt{5} L_n(x), \ldots, \sqrt{2n+1} L_n(x) \right\}
\]

the inner product in \(H_s \) is given:

\[
\langle u(x), v(x) \rangle = \int_0^1 u(x)v(x) dx, u(x), v(x) \in \overline{H}
\]

(6)

then

\[
K(x, y) = K_s(y) = \sum_{n=0}^{\infty} L_n(x)L_n(y)
\]

(7)

is reproducing kernel of \(\overline{H}_s \).

Proof. Using [21], we can prove that \(\overline{H}_s \) is a reproducing kernel Hilbert space. Next we proof \(K_s(y) \) is a reproducing kernel of \(\overline{H}_s \) for \(\forall u(y) \in \overline{H}_s \).
Let:

\[
 u(y) = \sum_{i=0}^{n} c_i \sqrt{2i+1} L_i(y)
\]

and we have:

\[
 \langle u(x,t), K_{y}(y) \rangle = \left\{ \sum_{i=1}^{\infty} c_i \sqrt{2i+1} L_i(y), \sum_{i=1}^{\infty} (2j+1)L_j(y) \right\} = \sum_{i=1}^{\infty} c_i \sqrt{2i+1} L_i(y) = u(x)
\]

so \(K_{y}(y)\) is the reproducing kernel of \(\overline{H}_{n}\).

Using [11] and the reproducing kernel of \(\overline{H}_{n}\), we can get the following reproducing kernel spaces:

- Space \(H_{2} = \{ u(x) | u(x) \in \overline{H}_{4}, u(0) = 0 \}\), \(H_{2}\) has the same inner product as \(\overline{H}_{2}\), and it is a reproducing kernel space. Its reproducing kernel:

\[
 K_{2}(x,y) = 4xy[12 - 15y + 5x(-3 + 4y)]
\]

(9)

- Space \(H_{3} = \{ u(x) | u(x) \in \overline{H}_{5}, u(0) = 0, u(1) = 0 \}\), \(H_{3}\) has the same inner product as \(\overline{H}_{3}\), and it is a reproducing kernel space. Its reproducing kernel:

\[
 K_{3}(x,y) = 60(-1+x)(-1+y)y[4 - 7y + 7x(-1+2y)]
\]

(10)

- Space \(H(\Omega) = H_{2} \otimes H_{3} = \{ u(x) | u(x) \in H_{2} \otimes H_{3}, u(0,t) = u(1,t) = u(x,0) = 0 \}\) and its reproducing kernel:

\[
 K(x,t,y,s) = K_{2}(x,y) \times K_{3}(t,s), (x,y),(t,s) \in \Omega
\]

(11)

where \(K_{2}(x,y), K_{3}(y,x)\) are given in eqs. (9) and (10), respectively.

Pricewise reproducing kernel method

Put:

\[
 A_{\{x,t\},\{x',t'\}}^\Delta u_{\{x,t\}}(x,t) = D_{\{x,t\}}^\Delta u_{\{x,t\}}(x,t) + \beta_1(x,t) \frac{\partial u_{\{x,t\}}(x,t)}{\partial x} + \beta_2(x,t) \frac{\partial^2 u_{\{x,t\}}(x,t)}{\partial x^2}
\]

(12)

\[
 \nu(x,t) = u_{\{x,t\}}(x,t) - U_{\{x,t\}}(x,t) + U_{\{x,t\}}(x,t)
\]

(13)

where

\[
 U_{\{x,t\}} = \phi_1(t)(1-x) + \phi_2(t)x, \ U_{\{x,t\}}(x) = U(x,0), \ u_\{x\}(x) = u(x,0)
\]

After homogenization, eq. (1) are converted to the following from:

\[
\begin{align*}
 A_{\{x,t\},\{x',t'\}}^\Delta v_{\{x,t\}} &= g(x,t), \quad (x,t) \in \Omega = [0,1] \times [0,1] \\
 v_{\{x,t\}}(x,0) &= 0, \quad 0 \leq x \leq 1 \\
 v_{\{x,t\}}(0,t) &= 0, \quad v(1,t) = 0, \quad 0 \leq t \leq 1
\end{align*}
\]

(14)

where

\[
 g(x,t) = f(x,t) - A_{\{x,t\}}^\Delta [U_{\{x,t\}} + u_\{x\}(x) - U_{\{x,t\}}(x)]
\]

Let \(\{x_i, t_i\}_{i=1}^{\infty}\) be nodes in interval:

\[
[0,1] \times [0,1], \psi_i(x,t) = L_{\{x,t\}}^i K_{\{x,t\}}(x,t) \big|_{\{x,t\}=\{x_i,t_i\}} \quad i = 1,2,\ldots, \infty
\]
\[\psi_i(x,t) = \sum_{k=1}^{\infty} \beta_{ik} \psi_k(x,t), \quad (\beta_k > 0, i = 1, 2, \ldots, \infty) \]

(15)

where \(\beta_{ik} \) are the coefficients resulting from Gram-Schmidt orthonormalization.

Theorem 2. If \(A^{-1} \) exists and \(\{x_i, t_i\}_{i=1}^{\infty} \) is denumerable dense points in \(\Omega \):

\[v(x,t) = \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \beta_{ik} g(x_i, t_i) \psi_i(x,t) \]

(16)

is an analytical solution of eq. (14).

In view of eq. (16), an approximate solution of eq. (14) can be expressed:

\[v_N(x,t) = \sum_{i=1}^{N} \sum_{k=1}^{N} \beta_{ik} g(x_i, t_i) \psi_i(x,t) \]

(17)

However, the direct application of eq. (14) could not have a good numerical accuracy. In order to solve this problem, we use the piecewise reproducing kernel method [21-23].

Numerical simulation

In this section, some numerical tests are given to demonstrate the accuracy of the present method.

Example 1. We consider the following time fractional advection-reaction-diffusion equation:

\[
\begin{cases}
D_t^{\alpha(x,t)} u(x,t) = \frac{\partial^2 u(x,t)}{\partial x^2} + f(x,t), & 0 \leq x \leq 1, \quad 0 \leq t \leq 1 \\
u(0,t) = 6x^2(1+2x), & \alpha(1,t) = 0, \quad u(1,t) = 18(1+t^2)
\end{cases}
\]

(18)

The exact solution is \(u_t(x,t) = 6x^2(1+2x)(1+t)^2 \). Numerical results of Example 1 are shown in tab. 2.

<table>
<thead>
<tr>
<th>(x)</th>
<th>Exact solution (\alpha = 0.5)</th>
<th>Traditional RKM (\alpha = 0.5)</th>
<th>Present method (\alpha = 0.5)</th>
<th>Present method (\alpha = 0.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0727218</td>
<td>5.197 \cdot 10^{-4}</td>
<td>4.523 \cdot 10^{-4}</td>
<td>1.753 \cdot 10^{-10}</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3393680</td>
<td>7.315 \cdot 10^{-3}</td>
<td>8.426 \cdot 10^{-3}</td>
<td>3.502 \cdot 10^{-10}</td>
</tr>
<tr>
<td>0.3</td>
<td>0.8726620</td>
<td>7.074 \cdot 10^{-3}</td>
<td>1.157 \cdot 10^{-4}</td>
<td>5.103 \cdot 10^{-10}</td>
</tr>
<tr>
<td>0.4</td>
<td>1.7453200</td>
<td>5.198 \cdot 10^{-3}</td>
<td>1.380 \cdot 10^{-4}</td>
<td>6.411 \cdot 10^{-10}</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0300700</td>
<td>2.407 \cdot 10^{-3}</td>
<td>1.498 \cdot 10^{-4}</td>
<td>7.281 \cdot 10^{-10}</td>
</tr>
<tr>
<td>0.6</td>
<td>4.7996400</td>
<td>5.768 \cdot 10^{-3}</td>
<td>1.495 \cdot 10^{-4}</td>
<td>7.568 \cdot 10^{-10}</td>
</tr>
<tr>
<td>0.7</td>
<td>7.1267400</td>
<td>3.031 \cdot 10^{-3}</td>
<td>1.359 \cdot 10^{-4}</td>
<td>7.129 \cdot 10^{-10}</td>
</tr>
<tr>
<td>0.8</td>
<td>10.087100</td>
<td>4.234 \cdot 10^{-3}</td>
<td>1.074 \cdot 10^{-4}</td>
<td>5.817 \cdot 10^{-10}</td>
</tr>
<tr>
<td>0.9</td>
<td>13.744400</td>
<td>3.464 \cdot 10^{-3}</td>
<td>6.259 \cdot 10^{-3}</td>
<td>3.489 \cdot 10^{-10}</td>
</tr>
</tbody>
</table>

Example 2. We consider the following time fractional advection-reaction-diffusion equation [1-4]:
The exact solution is:

$$u_r(x,t) = x^2 \frac{2\Gamma(\alpha + 1)}{\Gamma(2\alpha + 1)} t^{2\alpha}$$

Numerical results of Example 2 are shown in fig. 1 and tabs. 3 and 4.

Example 3. We consider the following time fractional time-space fractional diffusion equation [5]:

$$\begin{align*}
&\frac{\partial^\alpha u(x,t)}{\partial t^\alpha} = -x^\alpha \frac{\partial u(x,t)}{\partial x} + x \frac{\Gamma(2.8)}{2} \frac{\partial^\beta u(x,t)}{\partial x^\beta} + q(x,t), \quad 0 \leq x \leq 1, \quad 0 < t \leq 1 \\
&u(x,0) = x^2 (1-x), \quad u(0,t) = u(1,t) = 0
\end{align*}$$

The exact solution is $u_r(x,t) = x^2 (1-x)(1 + t^\alpha)$. Numerical solution of Example 3 are shown tab. 5. Reproducing kernels are shown in figs. 2 and 3.

Figure 1. The left shows the approximate solutions of Example 2 for $\alpha = 0.5, N = 2$, the right shows the absolute errors of Example 2 for $\alpha = 0.5, N = 2$.

Table 3. Comparison of absolute errors of Example 2 for $\alpha = 0.5, t = 0.5$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>$1.110 \cdot 10^{-16}$</td>
<td>$6.994 \cdot 10^{-3}$</td>
<td>$6.462 \cdot 10^{-3}$</td>
<td>$6.093 \cdot 10^{-3}$</td>
<td>$1.210 \cdot 10^{-3}$</td>
<td>$1.110 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>$1.721 \cdot 10^{-4}$</td>
<td>$1.578 \cdot 10^{-4}$</td>
<td>$4.843 \cdot 10^{-5}$</td>
<td>$1.259 \cdot 10^{-3}$</td>
<td>$1.110 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
<td>$2.472 \cdot 10^{-4}$</td>
<td>$2.272 \cdot 10^{-4}$</td>
<td>$2.750 \cdot 10^{-4}$</td>
<td>$1.865 \cdot 10^{-3}$</td>
<td>$2.220 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>0.4</td>
<td>$2.220 \cdot 10^{-16}$</td>
<td>$2.912 \cdot 10^{-4}$</td>
<td>$2.674 \cdot 10^{-4}$</td>
<td>$1.937 \cdot 10^{-2}$</td>
<td>$7.412 \cdot 10^{-3}$</td>
<td>$2.220 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>$3.004 \cdot 10^{-4}$</td>
<td>$2.759 \cdot 10^{-4}$</td>
<td>$1.000 \cdot 10^{-3}$</td>
<td>$1.000 \cdot 10^{-3}$</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>$2.220 \cdot 10^{-16}$</td>
<td>$2.760 \cdot 10^{-4}$</td>
<td>$2.534 \cdot 10^{-4}$</td>
<td>$4.359 \cdot 10^{-3}$</td>
<td>$7.460 \cdot 10^{-3}$</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>$2.220 \cdot 10^{-16}$</td>
<td>$2.213 \cdot 10^{-4}$</td>
<td>$2.035 \cdot 10^{-4}$</td>
<td>$1.734 \cdot 10^{-2}$</td>
<td>$1.724 \cdot 10^{-3}$</td>
<td>$2.220 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>0.8</td>
<td>$2.220 \cdot 10^{-16}$</td>
<td>$1.440 \cdot 10^{-4}$</td>
<td>$1.320 \cdot 10^{-4}$</td>
<td>$7.750 \cdot 10^{-3}$</td>
<td>$4.990 \cdot 10^{-3}$</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
<td>$5.026 \cdot 10^{-4}$</td>
<td>$4.653 \cdot 10^{-4}$</td>
<td>$4.443 \cdot 10^{-3}$</td>
<td>$1.678 \cdot 10^{-2}$</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4. Comparison of absolute errors obtained by present method for Example 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α = 0.3</td>
<td></td>
<td>α = 0.5</td>
<td></td>
<td>α = 0.9</td>
<td></td>
<td>α = 0.9</td>
<td></td>
</tr>
<tr>
<td>(0.1, 0.1)</td>
<td>0</td>
<td>0</td>
<td>2.776 ⋅ 10^{-17}</td>
<td>2.776 ⋅ 10^{-17}</td>
<td>0</td>
<td>3.122 ⋅ 10^{-17}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.2, 0.2)</td>
<td>1.110 ⋅ 10^{-16}</td>
<td>1.110 ⋅ 10^{-16}</td>
<td>5.551 ⋅ 10^{-16}</td>
<td>1.110 ⋅ 10^{-16}</td>
<td>2.776 ⋅ 10^{-17}</td>
<td>2.220 ⋅ 10^{-16}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.3, 0.3)</td>
<td>2.220 ⋅ 10^{-16}</td>
<td>0</td>
<td>1.110 ⋅ 10^{-16}</td>
<td>2.220 ⋅ 10^{-16}</td>
<td>5.551 ⋅ 10^{-17}</td>
<td>2.220 ⋅ 10^{-16}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.4, 0.4)</td>
<td>0</td>
<td>0</td>
<td>1.110 ⋅ 10^{-16}</td>
<td>0</td>
<td>1.776 ⋅ 10^{-15}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.5, 0.5)</td>
<td>0</td>
<td>2.220 ⋅ 10^{-18}</td>
<td>0</td>
<td>0</td>
<td>1.110 ⋅ 10^{-16}</td>
<td>2.564 ⋅ 10^{-12}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.6, 0.6)</td>
<td>0</td>
<td>4.440 ⋅ 10^{-16}</td>
<td>0</td>
<td>0</td>
<td>1.110 ⋅ 10^{-16}</td>
<td>2.700 ⋅ 10^{-13}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.7, 0.7)</td>
<td>4.441 ⋅ 10^{-16}</td>
<td>0</td>
<td>0</td>
<td>2.220 ⋅ 10^{-16}</td>
<td>2.220 ⋅ 10^{-16}</td>
<td>6.972 ⋅ 10^{-13}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.8, 0.8)</td>
<td>0</td>
<td>4.441 ⋅ 10^{-16}</td>
<td>0</td>
<td>0</td>
<td>1.110 ⋅ 10^{-16}</td>
<td>3.648 ⋅ 10^{-13}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.9, 0.9)</td>
<td>4.441 ⋅ 10^{-16}</td>
<td>4.440 ⋅ 10^{-16}</td>
<td>8.882 ⋅ 10^{-16}</td>
<td>4.440 ⋅ 10^{-16}</td>
<td>0</td>
<td>1.209 ⋅ 10^{-12}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Comparison of absolute errors obtained by present method for Example 3 at α = β = 0.5, t = 0.2

<table>
<thead>
<tr>
<th>x</th>
<th>Exact solution</th>
<th>Present method</th>
<th>Present method</th>
<th>[5]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N = 2</td>
<td>(h = 0.0000000001)</td>
<td>N = 6</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0094</td>
<td>5.983 ⋅ 10^{-3}</td>
<td>3.600 ⋅ 10^{-13}</td>
<td>5.373 ⋅ 10^{-11}</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0333</td>
<td>9.996 ⋅ 10^{-3}</td>
<td>1.280 ⋅ 10^{-12}</td>
<td>1.021 ⋅ 10^{-10}</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0655</td>
<td>1.228 ⋅ 10^{-2}</td>
<td>2.520 ⋅ 10^{-12}</td>
<td>1.621 ⋅ 10^{-10}</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0998</td>
<td>1.307 ⋅ 10^{-2}</td>
<td>3.840 ⋅ 10^{-12}</td>
<td>2.335 ⋅ 10^{-10}</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1300</td>
<td>1.262 ⋅ 10^{-2}</td>
<td>5.000 ⋅ 10^{-12}</td>
<td>3.174 ⋅ 10^{-10}</td>
</tr>
<tr>
<td>0.6</td>
<td>0.1498</td>
<td>1.115 ⋅ 10^{-2}</td>
<td>5.760 ⋅ 10^{-12}</td>
<td>4.142 ⋅ 10^{-10}</td>
</tr>
<tr>
<td>0.7</td>
<td>0.1529</td>
<td>8.919 ⋅ 10^{-3}</td>
<td>5.880 ⋅ 10^{-12}</td>
<td>5.242 ⋅ 10^{-10}</td>
</tr>
<tr>
<td>0.8</td>
<td>0.1331</td>
<td>6.156 ⋅ 10^{-3}</td>
<td>5.120 ⋅ 10^{-12}</td>
<td>6.464 ⋅ 10^{-10}</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0842</td>
<td>3.103 ⋅ 10^{-3}</td>
<td>3.240 ⋅ 10^{-12}</td>
<td>7.787 ⋅ 10^{-10}</td>
</tr>
</tbody>
</table>

Figure 2. Reproducing kernel of space $\tilde{H}_3[0, 1]$
Figure 3. The set of reproducing kernel of space $\tilde{H}_n[0, 1]$ with $n = 1, 2, ..., 7$
Conclusion

In this paper, some new reproductive kernels are given. The numerical results show that the present method has high precision compared with traditional reproducing kernel method, and has a better convergence. Besides, the method can also be used to study other fractional advection-dispersion models and fractal advection-dispersion models with fractal derivatives [26-31].

Acknowledgment

The authors would like to express their thanks to the unknown referees for their careful reading and helpful comments. The work is supported by the Natural Science Foundation of Inner Mongolia [2017MS0103].

References

