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The current flows in a porous media is a very complex nature phenomenon, and it 
is very difficult to establish its mathematical model with the traditional definition 
of derivative. In this paper, the fractal resistance-capacitance circuit of porous 
media is successfully established based on He’s fractal derivative, and the two-
scale transform is adopted to solve the fractal circuit. In this fractal resistance-ca-
pacitance circuit circuit, the fractal dimension represents the effective porosity of 
the two plates of the capacitor, and the influence of its value on the fractal resis-
tance-capacitance circuit circuit is also elaborated.
Key words: He’s fractal derivative, fractal resistance-capacitance circuit,  
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Introduction

The micro-pore structure of the porous media, e. g. natural rock and man-made ma-
terial, is always very complex. These porous materials have very strong micro-heterogeneity  
[1-4], and the flow of electric current through these porous conductors is a very complex pro-
cess, see fig. 1. 

The transport properties of current in po-
rous materials are affected by structural factors, 
such as tortuosity, pore size distribution, con-
nectivity, porosity and so on. The mathemati-
cal model is so complex that the classical defi-
nition of the derivative is completely invalid  
[5, 6]. Professor He [7-15] proposed the definition 
of fractal derivative in 2014, which is a very power-
ful tool to establishment of a complex mathematical 
model in a fractal space or a porous medium. 

He’s fractal derivative is defined [16]:
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Figure 1. Electric current flow in  
porous conductor
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In this paper, we mainly use He’s fractal derivative to establish the fractal resis-
tance-capacitance (R-C) circuit model for the current flowing in porous media. The two-scale 
transform is adopted to solve the fractal R-C circuit, and the physical meaning of fractal order 
is explained in detail.

The two-scale transform 

The two-scale transform is a new transform method, which is an extension of He’s 
fractional complex transform [17]. It was proposed by He [18] successfully used to solve many 
fractal problems.

Consider a fractal equation:

( )D 0
D

F
tα
ϕ ϕ+ = (1)

In order to use the two-scale transform, we assume:

T tγ= (2)
where t is for the small scale and T for large-scale, α – the two-scale dimension. Therefore, the 
eq. (1) can be converted into its traditional partner:

( ) 0D F
DT
ϕ ϕ+ = (3)

Then the eq. (3) can be solve by many classical methods, such as the homotopy 
perturbation method [19-21], the variational iteration method [22-24], Taylor series method  
[25, 26], the exp-function method [27] and so on [28-35].

The fractal R-C circuit

The R-C circuit is a voltage divider consist-
ing of a resistance, R, and a capacitance, C. As a 
very important circuit in the circuit, the R-C cir-
cuit is usually used as signal transmission circuit 
in electronic circuit. According to different needs, 
it can realize coupling, phase shifting, filtering and 
other functions in the circuit. 

As shown in fig. 2, the classical zero state 
R-C circuit can be described:
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Subject to the initial condition:
 	 ( )0 0CU =

However, when the capacitor is a porous medium, the aforementioned equation can-
not describe the effect of porous property on the R-C circuit, so we need to establish a new 
fractal R-C circuit model:
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Taking the two-scale transform:
T tγ= (6)

Figure 2. The classical zero state R-C circuit
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Equation (5) can be converted into the form:
( ) ( )

d
d
C

C

U T
RC U T U

Tγ + = (7)

The solution of the eq. (7) is given:

( ) 1 e
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where σ = RCγ, which is called the time constant.
Correspondingly:
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So, the solution of the eq. (7) is obtained by using eqs. (6) and (8):
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Correspondingly, there is:
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Letting U = 1, σ = 6, we plot the behavior 
of iγ,C(τ, γ) with γ = 0.1, 0.2, 0.4, 0.7, 0.9, respec-
tively in fig. 3.

Figure 3 shows that the value of current 
iγ,C(τ, γ) decreases as the value of γ increases, 
where the fractal dimension γ represents the ef-
fective porosity of the two plates of the capacitor 
that illustrated in fig. 4. 

Then we get the curves of the Uγ,C(τ, γ) 
with γ = 0.1, 0.2, 0.4, 0.7, 0.9, respectively in 
fig. 5. Obviously, the charging speed of the ca-

Figure 3. The curves of the iγ,C(τ, γ) with  
γ = 0.1, 0.2, 0.4, 0.7, 0.9

Figure 4. The fractal capacitor 
with porous plates

Figure 5. The curves of the Uγ,C(τ, γ) with  
γ = 0.1, 0.2, 0.4, 0.7, 0.9
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pacitor increases with the increase of γ, which is related to the time constant σ. Now we recall 
the definition of capacitance:

4
S

C
k d

γ
γ

ε
=

π
(12)

where ε is the relative permittivity, k – the electrostatic force constant, Sγ is the positive area of 
the two plates, and d – the distance between the two plates. 

With the increase of γ, the effective facing area Sγ decreases, that is the decrease of Cγ, 
which leads to the decrease of the time constant σ.

Conclusion

This paper proposes a fractal R-C circuit by using He’s fractal derivative. The two-
scale transform is adopted to solve the fractal R-C circuit. The fractal dimension γ that means 
the porosity of the two plates of capacitor is discussed and its effect on the circuit is studied. 
The obtained results in this paper are expected to shed a bright light on practical applications 
of the circuit theory.
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