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A fractal modification of the reaction-diffusion process is proposed with fractal de-
rivatives, and a fractal variational principle is established in a fractal space. The 
concentration of the substrate can be determined according to the minimal value 
of the variational formulation. The solution process is illustrated step by step for 
ease applications in engineering, and the effect of fractal dimensions on solution 
morphology is elucidated graphically. 
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Introduction 

Reaction-diffusion processes happen always on an unsmooth boundary, the bound-
ary morphology has a great effect on the process. Recently Mahalakshmi et al. [1] studied a 
non-linear reaction-diffusion equation arising in biomedicine, and an accurate solution was 
obtained. The dimensionless material balance of substrate inside the support in a solid of planar 
or spherical shape can be written [1-4]:
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where u is the concentration, au/(b + u) is Michalis-Menten potential, σ = 0 or 2 presents, 
respectively, the slab and sphere cases, a and b are constants. 

Equation (1) can be solved by various effective methods, for example, the variational itera-
tion method (VIM) [5, 6], the Taylor series method [7-9], the homotopy perturbation method (HPM) 
[10-12], the reproducing kernel method [13, 14], and the wavelet-based optimization algorithm [1]. 

Equation (1) cannot model the unsmooth boundary effect on the process, a fractal 
modification of eq. (1) is given:
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where the fractal derivative is defined [15-24]:
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where ΔX is the smallest porous size and α – the two-scale fractal dimension. 
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The two-scale fractal dimension is defined:

0
0

= V
V

α α× (4)

where V and V0 are the volumes of the studied space in a large-scale and in a small scale, respec-
tively, α0 is the dimension on a large-scale. 

This paper will establish a variational formulation by the semi-inverse method [25], 
and then use the Ritz method to find an approximate solution of eq. (2). 

Variational principle 

In the definition of eq. (4), V is measured in a large-scale of x and it is considered as 
a continuum, V0 considers the same volume as a porous medium in a small scale of X. The two 
scales have the relationship:

x X α= (5)
By the aforementioned two-scale transform, eq. (2) can be converted to eq. (1). Now 

by the semi-inverse method [14-19], we can establish easily a variational formulation for  
eq. (1), which reads:
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Proof. The stationary condition of eq. (2):
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where L is the Lagrange function defined
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So the stationary condition:
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is obvious that eq. (9) is exactly eq. (1).
The fractal variational principle for eq. (2):
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We assume that the solution can be expressed:
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where cn (n = 0 ~ N) are constants to be determined later. In view of the boundary conditions:
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Substituting eq. (11) into eq. (6) results:
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The stationary condition of eq. (6) can be approximately obtained:
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Solving eqs. (12), (13), and (15) simultaneously, we can identify cn(n = 0 ~ N). 

An example 

We consider following fractal reaction-diffusion equation:
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Its fractal variational principle:
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By the two-scale transform given in eq. (5), we can convert eq. (16) into:
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This equation was studied in [1]. 
The variational formulation:
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According to the boundary conditions, we assume that its solution can be expressed:
2( ) (1 3 )u x c cx= − + (20)

where c is an unknown constant. It is obvious that eq. (20) satisfies the boundary conditions. 
Substituting eq. (20) into eq. (19) leads:
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Its stationary condition requires:
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We can solve c from eq. (15) by some a mathematical software. For audience who are 
not familiar with mathematical software, we suggest an approximate solution process according 
to an ancient Chinese algorithm called Ying-buzu algorithm [26-28].

The Ying-buzu algorithm is to solve the equation by two trial solutions:
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We assume the two trial solutions are c1 and c2, which lead to the residuals of  f(c1) and 
f(c2), respectively, the approximate solution can be calculated:
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We choose two trial values for c, for example, c1 = 0.005 and c2 = 0.00495, then we 
obtain easily the residuals by eq. (22), which are, respectively:
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According to the Ying-buzu algorithm [20-22], we have:
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Therefore, we obtain the following ap-
proximate solution, fig. 1:

20.98533( ) 0.00489u x x= + (28)

This approximate solution is closed to 
that by Mahalakshmi et al. [1]:

20.98743( ) 0.00496u x x= + (29)

The accuracy can be improved if more 
terms are included in the trial solution.

Solution morphology 

The approximate solution of eq. (16):
280.985 3( ) 0 9X3 .004u X α= + (30)

It is obvious that:
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When X = 0α, we have the properties:
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Equation (32) implies that u will change suddenly at X = 0α, as shows in fig. 2. When  
α = 0.5, a linear relationship is obtained, see fig. 3, and when α > 0.5, the slope at X = 0α be-

Figure 1. Comparison of the approximate 
solution of eq. (28) with the exact one
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comes very small as shown in fig. 4. So the solution properties depend strongly upon the value 
of α. When α → 1, the solution morphology tends to that of the classical model. 
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Figure 2. Solution morphology when α < 0.5; (a) α = 0.1 and (b) α = 0.2 

Discussion and conclusion

This paper suggests a variational approach 
to eq. (1) and its fractal modification. As the vari-
ational formulation has an energy integral, which 
can suggest possible solution structure. Accord-
ing to eq. (6), 1/2(du/dx)2 can be understood as the 
kinetic energy of the reaction-diffusion process, 
while a[bln(b + u) – u] is the reaction potential, 
its derivative with respect to u is the well-known 
Michalis-Menten potential. As the solution pro-
cess is simple and straightforward, the variational approach can be extended to more complex 
non-linear systems, and this paper can be used as a paradigm for practical applications. 
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