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This paper extends the (2+1)-dimensional Eckhaus-type dispersive long wave 
equations in continuous medium to their fractional partner, which is a model of 
non-linear waves in fractal porous media. The derivation is shown briefly using 
He’s fractional derivative. Using the semi-inverse method, the variational princi-
ples are established for the fractional system, which up to now are not discovered. 
The obtained fractal variational principles are proved correct by minimizing the 
functional with the calculus of variations, and might find potential applications in 
numerical modeling.
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Introduction

Partial differential equations are usually used to model different phenomena in 
non-linear sciences, ranging from physics to mechanics, plasma, materials, biology, chemistry, 
ocean, meteorology, and so on [1, 2]. Investigating solutions to such non-linear PDE is an im-
portant research area, and numerous mathematical techniques have been developed to explore 
the approximate or exact solutions [3-11]. Because variational principles are theoretical bases 
for many methods to solve or analyze the non-linear problem, such as Ritz technique [10], 
variational iteration method [11-15] and variational approximation method [16-18], it is a very 
important but difficult task to seek explicit variational formulations for non-linear PDE. The 
semi-inverse method [19-27] is widely used to establish variational principles from the gov-
erning equations directly, which was firstly proposed by the famous Chinese mathematician, 
He [19-25, 28-30]. Because it is not necessary to introduce Lagrange multipliers, the Lagrange 
crisis frequently encountered can be overcome [19-27]. The semi-inverse method has been used 
to search for variational formulations in plasma, mechanics, materials, fluid dynamics, solitary 
theory and so on [19-32]. It is Wang et al. [26] who established a variational formulation in a 
fractal space for wave travelling. Wang and He [27] extended Wang et al.’s variational principle 
to a fractal time/space. In this paper, we will apply the He’s semi-inverse method [19-27] to 
establish some variational principles for (2+1)-dimensional Eckhaus-type dispersive long wave 
equations with fractal derivatives.
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At first, we consider the following (2+1)-dimensional Eckhaus-type dispersive long-
wave equation [33, 34] in continuum mechanics.
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where U = U(X, Y, T) and H = H(X, Y, T) denotes the wave horizontal velocity and wave height, 
respectively, and both of them are dimensionless variables [33, 34]. Eckhaus firstly obtained the 
coupled non-linear eq. (1) from the basic equations of fluid dynamics by some proper approxi-
mations. It has been proved that there are only finite dimensional symmetry groups in the sys-
tem (1), which does not own Painleve property [33]. There are lots of solitary wave solutions, 
rational solutions, triangular solutions, hyperbolic function solutions, Jacobi elliptic function 
solutions contained in the eq. (1) [34].

The fractional partner

Usually, we can view physical motions and phenomena from two distinctly different 
scales [35, 36]. One is the large-scale, where Newton’s calculus is approximately valid and the 
traditional mechanics can be roughly applied. The other scale is a much smaller one, a scale 
of molecule size. Under such a small scale, the media becomes discontinuous, and the fractal 
calculus [29-31, 37-43] has to be adopted. Equation (1) is a very useful model to describe many 
kinds of waves in continuous media, however an unsmooth boundary will greatly affect the 
properties of non-linear waves. Therefore, the smooth space (X, Y, T) should be replaced by a 
fractal space (X β, Y γ, T α), where, β, γ, and α are, respectively, fractal dimensions in space and 
time. In the fractal space, eq. (1) becomes:
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where the He’s fractal derivatives are defined [37-43]:
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The similar definitions of eqs. (3)-(5) can also be given for H(X, Y, T) in eq. (2). For 
the fractal derivative, we have the following chain rules:
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In the definitions given in eqs. (3)-(5), ΔX, ΔY, and ΔT are, respectively, the smallest 
spatial and temporal scale for watching the physical phenomena. For example, when the spatial 
scale is larger than ΔX, the boundary is considered as a smooth one, and traditional continuum 
mechanics works. However, when we observe the wave on the scale of ΔX, the boundary is 
discontinuous, and it is considered as a fractal curve [37-43]. In the fractal space, all vari-
ables depend upon the scales used for observation and the fractal dimensions of the discontin-
uous boundary. The fractal derivatives are widely used in applications for discontinuous media  
[29-31, 37-43].

Variational principle

The semi-inverse method [19] is widely used to establish variational principles di-
rectly from the governing equations. It can be used to search for variational formulations in 
plasma, economics and Lane-Emden equation [19-27]. It is Wang et al. [26] who established 
a variational formulation in a fractal space for wave travelling. Wang and He extended Wang 
et al.’s variational principle to a fractal time/space [27]. In this paper, we will apply the He’s 
semi-inverse method [19-25] to establish needed variational principles for (2+1)-dimensional 
Eckhaus-type dispersive long wave equation with fractal derivatives eq. (2). In a fractal space, 
the physical laws should also be followed. According to the basic properties given previously, 
the following time and space scale transforms [35-37] can be introduced:

t Tα= (10)

x X β= (11)

y Y γ= (12)
Equation (2) becomes:
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In order to use the semi-inverse method [19-27] to establish a variational formulation 
for Eq. (13), we can rewrite Eq. (13) in the conservative forms:
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According to the second equation in (14), two potential functions Φ and Ψ can be 
introduced:

( )
x

t xx yy

xx

H
UH U U

U

Φ
Φ Ψ

Ψ

 =


= − + + −
 =

(15)

so that the second equation in (14) is automatically satisfied.
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The objective in this paper is to establish variational principles for the (2+1)-dimen-
sional Eckhaus-type dispersive long wave equations (2) by He’s semi-inverse method [19-25]. 
At first, a trial-functional can be constructed:

( , , , ) d d dJ U H L x y tΦ Ψ = ∫∫∫ (16)

where L is the trial-Lagrangian. By the semi-inverse method [19-25], we assume that the tri-
al-Lagrange function can be written:
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and F is an unknown function of U, H, and Ψ and their derivatives. There exist alternative ways 
to the construction of the trial-functional, see [19-25]. The advantage of the aforementioned 
trial-Lagrange lies on the fact that the stationary condition with respect to Φ results in the fol-
lowing Euler-Lagrange equation:
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which is identical to the first equation in eq. (14).
Now calculating the stationary condition of the aforementioned trial-Lagrange L with 

respect to U and H, respectively:
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where δF/δU and δF/δH is called the variational derivative [19] with respect to U and H. In 
view of eqs. (17), (19), and (20) can be re-written:
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In view of the first and second equations in eq. (15), we have:
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From the previous eqs. (23) and (24), F  can be identified easily:
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and
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where F1 is free of U, H, and Φ and their derivatives. Substituting (25) or (26) into (17), the 
trial-Lagrangian function can be updated:
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and F1 is an unknown function only of Ψ and/or its derivatives. Now calculating the stationary 
condition of the aforementioned trial-Lagrange L with respect to Ψ only:
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In view of the third equation in eq. (15):
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From the previous equation, F1 can be identified as two various forms:
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1 2
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1 2
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Substituting (31) and (32) into (27) or (28) leads to four different trial-Lagrange func-
tionals：
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Finally, we obtain the variational formulations for the (2+1)-dimensional Eck-
haus-type dispersive long-wave equation with fractal derivatives eq. (14):
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Proof. Making any of the aforementioned functionals, eqs. (37)-(40), stationary with 
respect to Φ, Ψ, U, and H, respectively, we obtain the following Euler-Lagrange equations: 
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: 0yy xxyyUδΨ Ψ+ = (42)

: 0t x xx yyU U U Uδ Φ Φ Ψ+ + + + = (43)

: 0xH Hδ Φ − = (44)
in which δΦ, δΨ, δU, and δH is the first-order variation for Φ, Ψ, U, and H, respectively. 
Obviously, the eq. (41) is equivalent to the first equation in eq. (14). From the eq. (42), we 
have Ψxx = –U, which is identical to the third equation in eq. (15). In view of the eq. (44), we 
have Φx = H, which is the first equation in eq. (15). Submitting Φx = H into eq. (43) yields,  
Φt = –UH – U – Uxx – Ψyy, which is completely equivalent to the second equation in eq. (15). 
Successfully, we prove the variational principles (37)-(40) correct. The variational formulation 
can also be written in the fractal space (X β, Y γ, T α):
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The aforementioned fractal variational integral formulations provide conservation 
laws in an energy form for the considered system, and can help us to understand deeply the 
physical relations and interactions among variables U, H, Φ, and Ψ in the fractal space. They 
also provide hints for designing numerical algorithms and attaining possible solution structures 
for analytical methods for the discussed problem.

Discussion and conclusion

In this paper, different groups of variational principles have been successfully con-
structed for the (2+1)-dimensional Eckhaus-type dispersive long wave equation with fractal 
derivatives, by the semi-inverse method and designing skillfully trial-Lagrange functionals. 
Then, the obtained fractal variational principles have proved correct by minimizing the corre-
sponding functionals. From the results of analysis, it is concluded that the variational principle 
for the fractional non-linear equations studied in this paper is not unique, but has many different 
integral formulations. According to the obtained fractal variational principles, on one hand, we 
can study possible solution structures for solitary waves, and understand deeply the physical 
relations and interactions between horizontal velocity and wave height. On the other hand, 
according to the obtained variational principle, we can study the laws of motion for related sol-
itary waves and the discussed problems can also be solved numerically by variational methods. 
The procedure also reveals that the semi-inverse method is straightforward and powerful. 
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