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The Whitham-Broer-Kaup equation exists widely in shallow water waves, but un-
smooth boundary seriously affects the properties of solitary waves and has certain 
deviations in scientific research. The aim of this paper is to introduce its modifica-
tion with fractal derivatives in a fractal space and to establish a fractal variational 
formulation by the semi-inverse method. The obtained fractal variational principle 
shows conservation laws in an energy form in the fractal space and also hints its 
possible solution structure.
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Introduction

Nowadays, the study of shallow water waves is a very hot topic [1-4]. This paper, we 
mainly focus on the Whitham-Broer-Kaup (WBK) equation [5-7], reads:
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where p and q are real constants which mean different dispersive powers. In eqs. (1) and (2), if 
p = 0 and q ≠ 0, the system converts the approximate system of dispersive long wave equation, 
and if p = 1 and q = 0, we get the variant Boussinesq equation. At present, there are much lit-
erature about the analytical solution of this system, for example the Wu and Zhang elimination 
method [8], the auxiliary equation method [9], the hyperbolic function method [10], the varia-
tional iteration method, the homotopy perturbation method [11, 12] and so on.

Equations (1) and (2) are a complete integrable model, describing the dispersive long 
wave in shallow water. In practical problems, the unsmooth boundary has a great influence 
on shallow water waves. Fractal, therefore, provides a very effective manner to deal with dis-
continuous boundaries. Usually, the smooth space (X, T) should be instead of the fractal space  
(X β, T α), with α and β are fractal dimensional in time and space, respectively.
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So, the governing equations can be modified:
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in which ∂u/∂T α and ∂u/∂X β are the fractal derivative defined [13-18]:
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where ΔT and ΔX are the smallest time scale for researching the shallow water waves and the 
smallest spatial scale of the discontinuous boundaries. If the time scale is large than ΔT, a 
smooth wave property can be discussed, and if the spatial scale is large than ΔX, the problem 
studied has become a traditional smooth mechanical problem. In the study of fractal problems, 
the factors of all problems depend on the scale we used and the fractal dimension defined by an 
unsmooth boundary.

Variational principle

Variational principle [19-28] is a useful tool in mathematics, as an energy method to 
describe motion [19], it has wide applications in mathematics [20], mechanics [21], physics 
[22], economics [23], especially for non-linear problems. In view of the two-scale transform 
[29-32], eqs. (3) and (4) can be written:

0t x x xxu uu v qu+ + + = (7)

( ) 0t x xxx xxv uv pu qv+ + − = (8)
In order to apply the semi-inverse method [33, 34] which was proposed by He to 

construct a series of variational formulations for the aforementioned equation, eqs. (7) and (8) 
should be present in the conservation form:

21 0
2t x

x

u u v qu + + + = 
 

(9)

( ) 0t xx x xv uv pu qv+ + − = (10)
Two special auxiliary functions ψ and ϕ are introduced, and they are, respectively, 

satisfying:
21

2t xu v quψ = + + (11)

x uψ = − (12)

t xx xuv pu qvφ = + − (13)

x vφ = − (14)
It is intuitive to show that the eqs. (7) and (8) is equivalent to the eqs. (7), (13), and 

(14) or eqs. (8), (11), and (12). The main research purpose of this paper is to find a variational 
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principle whose stationary conditions satisfy the eqs. (7), (13), and (14) or eqs. (8), (11), and 
(12):

( , , ) ( , , , , , , , , , , , )d dt x xx t x xx t x xxJ u v L u u u u v v v v x tψ ψ ψ ψ ψ= ∫∫ (15)

in which L is the trial-Lagrange function.
Through the semi-inverse method, we can re-write the trial-Lagrange function:

( ) ( , )t xx x xL v uv pu qv F u vψ ψ= + + − + (16)

in which F(u, v) is an undetermined function with respect to u, v and/or their derivatives. The 
advantage of the Lagrange function that we’ve constructed in this way is that the stationary 
condition about ψ is eqs. (8) and (12).

The stationary conditions about u, v are given:
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in which δF/δu and δF/δv are called the variational derivative presented:

t x

t x

F F F F
u u t u x u

F F F F
v v t v x v

δ
δ

δ
δ

   ∂ ∂ ∂ ∂ ∂
= − − +   ∂ ∂ ∂ ∂ ∂   

   ∂ ∂ ∂ ∂ ∂
= − − +   ∂ ∂ ∂ ∂ ∂   





In the following process, we will find out a specific F(u, v) which make eqs. (17) and 
(18) one of field equations of the governing equations, respectively. From eqs. (11) and (12):

( )x xxx xxx
F v p uv pu
u

δ ψ ψ
δ

= − + = + (19)

21( )
2t x xx

F u q u v
v
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= − + + = − (20)

According to the eqs. (19) and (20), the undetermined function F(u, v) can be uniquely 
identified:

2 2 21 1 1
2 2 2 xF u v v pu= − − (21)

Therefore, we successfully construct the needed variational formulation, which shows:

( ) ( )2 2 21( , , ) d d
2t xx x x xJ u v v uv pu qv u v v pu x tψ ψ ψ = + + − + − − 

 ∫∫ (22)

Proof: Using the previous variational formulation, the Euler–Lagrange equations can 
be given in the following form:

0x xxx xxxv uv pu pψ ψ+ + + = (23)

21 0
2t x xu u v qψ ψ ψ+ + − + = (24)

( ) 0t xxx x xv uv pu qv− − + − = (25)
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It is very clear that eqs. (23) and (25) are equivalent to eqs. (12) and (8), respectively. 
According to the constraint eqs. (12), and (24) results in eq. (11).

Under the fractal space (X β, T α), the variational formulation can be written in the form:
22

2 2
2

1( , , ) d d
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T X X X X
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∫∫ (26)

We can also construct the other trial-Lagrange function in the form:
* 2 *1 ( , )

2t x xL u u v qu F u vφ φ = + + + + 
 

(27)

in which F*(u, v) is an undetermined function. It is crystal clear that the stationary condition 
about ϕ will lead to eq. (7). Now, the stationary conditions about u, v read:
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According to eqs. (28) and (29), we obtain:
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( )t x xx xx
F u q pu
u

δ φ φ φ
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*

x
F v
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δ φ
δ
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So, the undetermined function F*(u, v) can be identified:
* 2 21 1

2 2xF pu v= + (32)

And the other variational formulation reads:

( )* 2 2 21 1( , , ) d d
2 2t x x xJ u v u u v qu pu v x tφ φ φ  = + + + + +  
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In view of the aforementioned functional, the Euler-Lagrange equations:

0t x xx xxu q puφ φ φ+ − − = (34)

0x vφ + = (35)

21 0
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x
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(36)

It is obvious that eqs. (34)-(36) are equivalent to eqs. (13), (14), and (7). Similarly, in 
the fractal space (X β, T α), the variational formulation eq. (33) reads:
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2 2
u uJ u v u u v q p v X T

T X X X
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α β β β

φ φφ
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∫∫ (37)

Moreover, on the basis of the generalized variational formulations eqs. (22) and (33), 
many constrained variational principles can be directly given. Accordingly, the corresponding 
variational formula in fractal space can be obtained. For instance, we substitute eq. (12) into  
eq. (22), the constrained functional:
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( )** 2 2 21( , ) ( ) d d
2t xx x xJ u v pu qv u u v v pu x tψ ψ = − − − + + 

 ∫∫ (38)

with the constraint of eq. (12). The corresponding constrained variational formulation in fractal 
space:
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∫∫ (39)

with the constraint of ∂ψ/∂X β = – u. Further constraining eq. (39) by eq. (11), we have:

( )*** 2 21 1( ) d d
2 2xx xxJ v q uv puu pu x tψ  = + − − 

 ∫∫ (40)

The constrained variational formulation in fractal space of aforementioned functional 
can be written:

22
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∫∫ (41)

with the constraint of ∂ψ/∂T α = 1/2u2 + v +qux. Integrating by parts and ignoring its boundary 
items of eq. (40), we get:

{ }
2
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2 2 2xx t x xx x xxxJ v puu x t q p x tψ ψ ψ ψ ψ ψ
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The final constrained variational formulation in fractal space is given:
22 2 3
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which is subject to ∂ψ/∂X β = – u and ∂ψ/∂T α = 1/2u2 + v +qux.

Conclusion

In this work, we research variational principle of the WBK equation in the fractal 
space (X β, T α) through the semi-inverse method. This method was first proposed by He and is an 
effective theory to establish the variational formulation from the field equations. The variational 
principle can be construct conservation laws and solution structures.
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