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An extended variational iteration method within the local fractional derivative is 
introduced for the first time, where two Lagrange multipliers are adopted. More-
over, the sufficient conditions for convergence of the new variational iteration 
method are also established.
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Introduction 

The development of physical science and engineering has promoted the generation 
of various incompatible fractional derivatives, and it is an active research field to choose an 
appropriate fractional calculus according to a real physical problem. For examples, He’s frac-
tional derivative [1] was adopted to describe polar hair’s thermal property [2], the fractional 
Caputo-Fabrizio derivative was applied to the groundwater and thermal science [3], the local 
fractional calculus was used to process silk cocoon hierarchy [4], He’s fractal derivative was 
applied to explanation of snow’s thermal insulation property [5], adsorption kinetics [6], bio-
mechanism of polar hairs [7, 8], microgravity fluid [9], convection-diffusion process [10], and 
two-scale thermodynamics [11-13]. 

The local fractional calculus was firstly introduced by Yang [14], which could be used 
as a powerful tool to describing the motion of a fluid in a porous medium, and this calculus 
currently has a wide range of physical applications, such as [15-20].

The variational iteration method was first proposed by He [21], and the improvements 
and applications of the variational iterative method have been an active issue in solving differ-
ential equations, such as [22-33]. In this paper, we extend the variational iteration method by 
modifying the correction functional to make it more suitable for solving differential equations. 

Local fractional operators

In this section, we introduce two definitions of the local fractional calculus theory, 
which shall be used in this paper [14].
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Definition 1. In fractal space, the local fractional derivative of f(x)
 
of order α at x = x0 

is defined:
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 Definition 2. If a function f(x) ∈ C[a, b], the local fractional integral of
 
f(x) of order α 

in the interval [a, b] is defined:
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where
	  Δtj = tj+1 – tj, Δt = max{Δt1, Δt2, Δtj,...}
and 
	 [tj, tj+1], j = 0,..., N –1, t0 = a, tN = b

is a partition of the interval [a, b]. 

The extended variational iteration method  
for local fractional differential equation

Consider the following local fractional differential equation:
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where L and N are linear and non-linear operators, respectively, which depict the fractal behav-
iors of the physical processes, k1 and k2 are all real constants, β1 and β2 – the initial conditions, 
and where f(x) is the inhomogeneous part.

Moreover, α is the value of fractal dimensions of the porous medium. For α = 1, the 
proposed medium dose not have holes.

Based on the classic variational iteration method, we modify the classic correction 
functional for eq. (3):
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where λ1(t, x) and λ2(t, x) are two general Lagrange’s multipliers defined on the intervals  
[a, x] and [x, b], respectively, which satisfy the corresponding conditions at x = a and x = b, 
respectively, and where the terms L[u~n(t)] and R[u~n(t)] are all considered as restricted local 
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fractional variation, i. e., δαL[u~n(t)] = 0 and δαR[u~n(t)] = 0. The selected initial term u0(x) should 
satisfy the given boundary conditions of eq. (3).

Next, we will derive the proper correctional functional for eq. (3) and accordingly 
construct the extended variation iterative scheme:
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where the Lagrange’s multipliers λ1(t, x) and λ2(t, x) satisfy the corresponding conditions at  
x = a and x = b, respectively, i. e. λ1(t, x) = 0 and λ2(t, x) = 0. 

To find the optimal values of λ1(t, x) and λ2(t, x), we proceed as follows. Integrating by 
parts within each of the integrals in eq. (5), we have:
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Next, taking the variation with respect to un(x) of both sides of eq. (6), we obtain
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Therefore, we obtain the following stationary conditions:
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By virtue of eq. (8),we can rewrite eq. (6) as:
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The eq. (9) does provide an effective tool for constructing the following equivalent 
integral equation of eq. (3): 
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The solutions u(x) of eq. (3) can be obtained by the following recursive relation:
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Since there are many choices of the Lagrange multiplier based on eq. (8), many cor-
responding equivalent integral equations of eq. (3) can be derived. 

Convergence analysis

The distance function between function u(x) and function v(x) is defined in the fol-
lowing form:
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Theorem 1. If the linear and non-linear local fractional operators L[u(x)] and N[v(x)] 
satisfy the following Lipschitz conditions, respectively:
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where M1 and M2 are all positive constants:
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then eq. (11) has a unique solution. 
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Proof. Let u(x) and u⋅(x) be two different solutions for eq. (3), then:
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Since 0 < m < 1, then d[u(x), u⋅(x)] → 0 implies u(x) = u⋅(x) and this completes the 

proof.
Theorem 2. If the conditions shown in Theorem 1 are satisfied, the solution vn(x) ob-

tained from (11) converges to the exact solution u(x) of eq. (3).
Proof.
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Since 0 < m < 1, then d[vn(x), u(x)] → 0 as n → ∞. Therefore, vn (x) → u(x) as  
n → ∞. This completes the proof.

Applications

In this section, to demonstrate the applicability of this method, we apply it to the fol-
lowing local fractional differential equations. 

Case 1:
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Upon eqs. (8) and (17), we construct the following Lagrange’s multipliers:
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Consequently, based on eqs. (11) and (18), the equivalent integral equation of  
eq. (17) can be established:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

0
0

1 1, , d + 1 d
1 1

x

x

u x y u x y xt x A t x t A tα α

α α
= + − + −  Γ + Γ +∫ ∫ (19)

where 

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2, = , ,u x y x a u a x b u bα αλ λ−
 The required solution u(x) for eq. (19) and hence for eq. (17) can be obtained from 

the recurrence relation:
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In the following, let M2 > 0, I only prove that the following equation satisfy the con-
ditions of Theorems 1 and 2.

Case 2:
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 Upon the eqs. (8) and (22), we have the following Lagrange’s multipliers: 
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 Consequently, based on eqs. (11) and (23), the equivalent integral equation of  
eq. (22) can be established:
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Obviously:
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Conclusion

In this paper, an extended variational iteration method is introduced and the sufficient 
conditions for this method to converge are established. Several examples are given to confirm 
the validity of this method. As this method greatly enriches the content of variational iterative 
method, I believe that in the near future, more people will pay attention or discuss this method.
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