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This paper presents a new approach to filter signals for discrete-time physical 
problems with stochastic uncertain in the presence of random data transmission 
delays, out-of-order packets and correlated noise. To deal with the packet disorder, 
the system model synthesizing the transmission delays and out-of-order packets 
from the plant to the filter is established by utilizing signal reconstruction schemes 
based on the zero-order-holder and logic zero-order-holder. A robust finite horizon 
Kalman filter is proposed by augmenting the state-space model and minimizing 
the error covariance. To further improve the filtering performance, a linear esti-
mation-based delay compensation strategy is proposed by employing the reorga-
nized time-stamped measurements. Moreover, for solving the missing measurement 
problem whilst reducing the computational costs, an artificial delay compensation 
approach is established using an one-step prediction approach. Simulation results 
show the effectiveness of the proposed method.
Key words: finite horizon filtering, transmission delays, out-of-order packets, 

variational principle, fractal calculus 

Introduction

With the expansion of the physical device and system functions, network system with 
universal bus structure, that is, network control systems, then in its complete architecture, dis-
tributed mode of operation, relatively independent and well interconnected communication, 
saving wiring and signaling of reliability, showing all the virtues. Networked systems have 
gained rapid advances owing to the development of the communication technology and in-
creasing computation power [1, 2] with successful applications in a wide range of significant 
areas such as cyber-physical systems [3], smart grids [4], and communication networks [5, 6]. 
In order to meet the requirements of growing computation and large-scale system integration, 
it is necessary to design a suitable communication platform for improving the capacity of the 
communication link between physical and computational elements whilst increasing system 
flexibility and reducing installation and maintenance costs [2, 3, 7]. However, due to the con-
straints of communication bandwidth, networked systems often experience various network 
performance problems such as transmission delays, packet losses, out-of-order packets, miss-
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ing/fading measurements, and varied sampling/transmission intervals. Therefore, it is desirable 
to investigate these scenarios and find effective ways to deal with these problems.

In the literature, state estimation or filtering for networked systems has attracted much 
interest, in which measurements are transmitted via various communication channels. Zhong  
et al. [8] developed an automatic cross filtering method to improve the signal processing perfor-
mance. For data transmission over networks, several filtering or noise reduction methods have 
been proposed to alleviate the influence of the network performance problems mentioned before. 
To guarantee the optimisation of the parameters for the local filters, Yuan et al. [9] dealt with the 
distributed quantized multi-modal, H∞, fusion filtering problem using a class of two-time-scale 
system. Liu et al. [10] presented a weighted approach for error cross-covariance matrices, and in-
troduced a distributed Kalman filtering scheme to handle data transmission delay and cross-cor-
related noise. Zhou and Zhu [11] proposed a robust finite-time state estimation approach for a 
class of discrete-time networks with Markovian jump parameters. For discrete and distributed 
delay, Liu and Luo [12] proposed the double delayed feedback method to conceal the time de-
lay for a 2-D coupled electro-optic chaotic system. Moreover, Yang et al. [13] constructed an 
augmented Lyapunov-Krasovskii functional (LKF) and combined an integral inequality convex 
approach to estimate the proposed LKF. To increase the simultaneous multi-parameter estima-
tion precisions with time-dependent, Xie and Xu [14] investigated the optimal coherent control 
scheme. The augmented state approaches [15, 16] applied compensation schemes by one-step 
prediction deal with random delays. The dimension reduction methods are used to deal with 
the augmented dimension. Such as the fractional calculus or fractal calculus [17] has to be used 
to reveal the lost information due to the lower dimensional approach. Using random coupling 
strength and extended Kalman filters, a recursive state estimator was developed, where the gain 
matrix was determined by optimizing an upper bound matrix [18]. The measurement reorganiza-
tion approaches [19, 20] are an effective strategy employing the measurement transformation, so 
that a random delayed system can be transformed into a delay-free one. In order to describe ran-
dom delays and packet dropouts, a system could be transferred into random variables of a Ber-
noulli distribution [15, 21] to establish a linear estimator, and a state augmentation strategy was 
employed. However, the computational costs are too high due to the augmented system models.

Further, filtering approaches have been investigated such as H∞ filtering, robust fil-
tering, and finite-horizon filtering. Shen et al. [22] investigated event-triggered H∞ filtering 
of Markov jump systems, which used general transition probabilities by a mode-dependent 
event-triggered scheme of zero-order-holder (ZOH). The event-based H∞ filtering [5] is insen-
sitive to uncertainties appearing in system models and/or exogenous input signals, whereas 
robust filtering [23] was mainly designed for uncertain systems. On the other hand, the fi-
nite-horizon filtering [20, 24] was used for obtaining the upper boundary of the steady-state 
error covariance. Since the actual error covariance of the estimated state is less than the upper 
boundary, the finite-horizon filter has a better transient performance for the filtering process in 
networked systems.

In summary, the aforementioned discussion is related to the design of a filter with cor-
related noise, multi-step random delays or packet dropouts. The previous developments mainly 
concentrate on the systems with only one or two-step transmission delays. Moreover, the fil-
tering approaches in the presence of transmission delays and correlated noise combined with 
norm-bounded uncertainty cannot guarantee an appropriate upper boundary for the estimation 
of error covariances. Motivated by the aforementioned analysis, this paper focuses on designing 
a robust finite horizon filter for uncertain time-varying systems, the main contributions of this 
paper are summarized: 
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–– Taking into account of the random transmission delays, the received data packets with time-
stamp are investigated. Our theoretical analysis proves that dropping out-of-order packets 
using signal reconstruction schemes is capable of improving the filtering performance.

–– Establish the stochastic uncertain system model employing two signal reconstruction 
schemes to handle out-of-order packets. 

–– To deal with the filtering with random transmission delays, a new linear estimation-based 
compensation strategy is here proposed, where the delayed system is transformed into the 
equivalent delay-free one by reorganizing time-stamped measurement sequences to reduce 
computational costs.

Problem formulation

System description

In order to describe stochastic uncertainty for stochastic uncertain systems, the uncer-
tain parameters are converted to a model with multiplicative noise [15, 20, 25]. To alleviate the 
computational complexity, the measurement equation of the sensor is described by the follow-
ing uncertain linear discrete-time systems [21, 25]:

( ) ( ) ( )1 , 1,2,k k k k kx k Ak F K E x k B w k+ = + + =  (1)

( ) ( ) ( )k k k k kz k C F E x k v= + +H  (2)

where x(k) ∈ Rr is the state of the process to be estimated, z(k) ∈ Rm – the measurement output, 
Fk – the time-varying parametric uncertainty described by scalar multiplicative noise, and Fk, 
Hk, an Ek are known time-varying matrices, wk ∈ R and vk ∈ Rm – is the process and measure-
ment noise, respectively, which is zero-mean white noise with covariances Qk and Rk. The  
Ak ∈ Rr×r, Bk ∈ Rr, and Ck ∈ Rm×r are known, real, and time-varying matrices with appropriate 
dimensions. The initial state x(0) with mean µ0 and covariance P0 is assumed to be uncorrelated 
with any noisy signals. Note that the uncertainty Fk satisfies Fk FT

k  ≤ I.
In practical applications, the received signals are influenced by correlated noise  

[15, 21, 25]. As shown in fig. 1, we assume that the process noise wk and measurement noise vk 
are correlated at the same time instant k, the statistical properties satisfy:
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( )( ) ( )
, ,

, ,

0, 0k k

k k l k k lTk T
l l T

k k k l k k l

E w E v

Q Sw
E w v

v S R

δ δ

δ δ

= =

   
 =        

(3)

where Qk = QT
k, Rk = RT

k , and Sk = ST
k.

Modelling based on sequence re-ordering

Due to the limited bandwidth during the 
network transmission, we often meet network 
congestion. Figure 1 depicts the filtering with 
different network problems such as transmission 
delays and out-of-order packets.

Remark 1. Before the time-stamped data 
packets are transmitted, ZOH stores the most re-
cent data packet, whereas other time-stamped 
data packets are discarded [22]. In addition, 

Figure 1. Schematic diagram of filtering with 
transmission delays and out-of-order packets
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data packets from the previous time instant are used to maintain a reliable communication link 
[16]. The motivation of using a logic ZOH scheme is to obtain the latest data packet, suggest-
ing that the stored data packets will not be updated until the logic ZOH receives a new signal  
[5, 26]. Because the latest data packet, before being transmitted, is close to the current actual signal 
to be estimated, the network-induced packet disorders can be avoided using the logic ZOH [27].

Let the sampling time instant be t, the current time instant is k, the transmission in-
stants are denoted by k1 and k2 , respectively. Depending on the role of the ZOH and logic ZOH, 
the transmission delays from the sensor to the processor employing the ZOH and logic ZOH are 
represented by η(k1) and η(k2), where 0 ≤ η(k2) ≤ η(k1) ≤ N. The τ(k1) ∈ N and τ(k2) ∈ N are the 
transmission delays at the sampling time instants:

( ) ( )1 1 2 2k k k k kτ τ= + = + (4)
Since the received latest data packet is approximate to the current data packet, we set 

β(k) ≥ 0, showing the relation of the received time-stamp k1 and k2:
( )2 1k k kβ= + (5)

From eqs. (4) and (5):
( ) ( ) ( )2 1k k kτ τ β= − (6)

Moreover, at the current time instant k, k1, and k2 are re-written:
( ) ( )1 2, 'k k k k k kτ τ= − = − (7)

where τ(k) = τ(k1) as well as τ′(k) = τ(k) – β(k). 
Remark 2. The received valid data is reorganized by two signal reconstruction 

schemes. When the ZOH receives the time-stamped data packet z(k1), the stored signal yZ(k) is 
reorganized:

( ) ( )Zy k z k kτ= −   (8)
At the same time, when the logic ZOH receives the arriving data packet z(k2), the 

stored signal yLZ(k) is modeled:

( ) ( )LZy k z k kτ ′= −   (9)

where τ′(k) = τ(k) – β(k).  During data transmission from the plant to the filter over a communica-
tion network, the filter is able to obtain the knowledge of the data delays and dropout packets [20].

Robust finite horizon filtering

In this section, a robust filtering approach is proposed for stochastic uncertain systems 
shown in eqs. (1) and (2). As discussed earlier, the received valid data packets models eqs. (8)
and (9) are dealt with using two signal reconstruction schemes, i. e. ZOH and logic ZOH.

When the time-stamped data packets are transmitted over a communications network, 
the state estimation is conducted by using the upper boundary of the error covariance. At the 
current time instant, a linear estimation-based method is proposed to compensate the random 
transmission delays. A recursive approach based on finite horizon Kalman-like filtering is then 
introduced to pick up the missing packets.

In the literature, the state estimation or filtering problem with transmission delays 
is typically solved using the compensation strategy of one-step prediction. Although it leads 
to more accurate estimation, the computational complexity is increased. Our proposed linear 
estimation-based method is an approximate state estimation method, and hence its estimation 
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accuracy is similar to that of the standard one-step prediction approach. However, the proposed 
strategy can significantly reduce the computational costs and improve the estimation efficiency.

Filtering for ZOH scheme

At sampling time instant k, the stored signal yZ(k) refers to the most recent data packet 
z[k – τ(k)] for the ZOH. Let t = k – τ(k) from eqs. (2) and (8), the stored signal is reorganized:

( ) ( ) ( ) ( )Z t t t t ty k z t C F E x t v= = + +H (10)

Based on the reorganized time-stamped data packets and the projection equation, the 
state estimation is designed by using recursive scheme:

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ), ,
ˆˆ ˆ ˆ| | , 1 , , 0 | 1 | 1Z Z Z Z Z Z t Z t Zx t t proj x t y k y k y x t t K z t C x t t = − = − + − −  (11)

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ), , ,

ˆ 1 | 1 | , 1 , , 0

ˆ ˆˆ ˆ| 1 | 1

Z Z Z Z

Z t Z Z t Z t Z

x t t proj x t y k y k y

A x t t L z t C x t t

+ = + − =

 = − + − − 



(12)

where x^Z(t |t) is the filter, and x^Z(t + 1 |t) – the predictor of state x(t) with time-stamp t before 
being transmitted, meanwhile, yZ(k) – the stored signal, and the filter parameters satisfy KZ,t,  
LZ,t ∈ Rr×m, A^

Z,t ∈ Rr×r , and C^ 
Z,t ∈ Rm×r.

Augmented state vectors

To derive the filter parameters KZ,t, LZ,t, A^
Z,t, and C^ 

Z,t from the state estimation shown 
in eqs. (11) and (12), minimize the covariance estimation is developed. From the finite-horizon 
Kalman filtering theory, the prediction error e~Z(t) = x(t) – x^Z(t | t – 1) whilst the filtering error  
eZ(t) = x(t) – x^Z(t | t), such that the corresponding estimations x^Z(t |t – 1) and x^Z(t |t) are represented 
by augmented vectors:

( )
( )
( )

( )
( )
( )

,
ˆ ˆ| 1 |
Z Z

Z Z
Z Z

e t e t
t t

x t t x t t

   
Ψ = Ψ =   

−      



 (13)

Furthermore, Ψ
~

Z(t) is used to derive the augmented vectors ΨZ(t) and Ψ
~

Z(t + 1). Com-
bining eqs. (1), (10), and (11)-(13), the augmented estimation vectors with transmission delays 
τ(k) ≤ N and t = k – τ(k) are represented:

( ) ( ) ( ), 1 , 1 , 1 , 1Z Z t Z t t Z t Z Z t tt A H F E t D vΨ = + Ψ + (14)

( ) ( ) ( ), 2 , 2 , 2 , 2 , 21Z Z t Z t t Z t Z Z t t Z t tt A H F E t B w D vΨ + = + Ψ + +  (15)
where

( )
( )

[ ]

( )
( )

, , , , ,
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, , , ,

, 2 ,
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ˆ
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Z t t Z t Z t t Z t t Z t
Z t Z t Z t Z t t t Z t

Z t t Z tZ t t Z t t Z t

t Z t t t Z t Z t Z t t

Z t Z t

Z t t Z t Z t t Z t
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A L C A A L C C
A H

L C A L C C

 − − − −    = = = = =        + −      
 − − + −
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H
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, ,
0

t Z t t Z tt
Z t Z t

Z t t Z t

L LB
B D

L L
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= = =    
       

F H

H

(16)

From eqs. (14) and (15), the covariance matrices are defined based on the augmented es-
timation vectors Ψ

~
Z(t), and ΨZ(t). Let  ∑ ¯ Z(t) = E[Ψ

~
Z (t) Ψ

~
Z
T
 (t)] and ΘZ(t) = E[Ψ

  
Z (t)Ψ

  
Z
T
 (t)], the filtering 

covariance matrices are calculated according to the projection equation and correlation for noise:
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( )
( )

( ) ( )
0

0
Z

Z
Z

t
t

P t t

 Σ
Σ =  

−Σ  
(17)

where ∑ ¯ (t) = E[e~Z(t) e~T
Z (t)] and P(t) = E[x(t)xT(t)]. 

Therefore, in eqs. (14)-(17), the Riccati-like equations of error covariance matrices 
are evolved:

( ) ( ) ( )( ), 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1
T T

Z Z t Z t t Z t Z Z t Z t t Z t Z t t Z tt A H F E t A H F E D R DΘ = + Σ + +  (18)
and

( ) ( ) ( )( ), 2 , 2 , 2 , 2 , 2 , 2

, 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

1
T

Z Z t Z t t Z t Z Z t Z t t Z t

T T T T T
Z t t Z t Z t t Z t Z t t Z t Z t t Z t

t A H F E t A H F E

B Q B D R D B S D D S B

Σ + = + Σ + +

+ + + +

 

(19)

Note that the error covariance matrices are composed of the augmented estimation 
vectors, correlated noise, filtering and prediction equations.

Upper boundary for estimation covariance

The objective of the robust finite horizon Kalman-like filtering is to obtain a guaran-
teed upper boundary utilizing the minimum error covariance. Therefore, the guaranteed upper 
boundaries for filtering and prediction covariance matrices are chosen to derive the filter param-
eters in this section. The Lemmas 1 and 2 referring to [20] are introduced to deduce the upper 
boundary.

Theorem 1. For (A + HFE)X(A + HFE)T, according to Lemmas 1 and 2, if there 
exists a positive scalar α and a symmetric positive definite matrix X, from eqs. (18) and 
(19), αt is a positive scalar and ∑Z(t) is a symmetric positive definite matrix, which satisfy  
αt

–1I – EZ,t2∑Z(t)ET
Z,t2 > 0. Then ∑

~ 
Z (t) ≤ ∑Z(t) and Θ~

Z(t) ≤ ΘZ(t), derived from ∑
~ 

Z (t). Therefore, the 
upper boundaries ΘZ(t) and ∑Z(t + 1) are the solutions of the recursive equations:

( ) ( )

( ) ( )( ) ( )

1
, 1 , 1 , 1 , 1 , 1 , 1

11
, 1 , 1 , 1 , 1 , 1 Z , 1

T T T
Z Z t Z Z t t Z t Z t Z t t Z t

T T T
Z t Z Z t t Z t Z Z t Z t Z t

t A t A H H D R D

A t E I E t E E t A

α

α

−

−−

Θ = Σ + + +

+ Σ − Σ Σ (20)

and
( ) ( )

( ) ( ) ( )

1
, 2 Z , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

11
, 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

1 T T T T T
Z Z t Z t t Z t Z t Z t t Z t Z t t Z t Z t t Z t

T T T T T
Z t t Z t Z t Z Z t t Z t Z Z t Z t Z Z t

t A t A H H B Q B D R D B S D

D S B A t E I E t E E t A

α

α

−

−−

Σ + = Σ + + + + +

 + + Σ − Σ Σ  (21)
Proof. The proof is similar to that reported in [20].
Note that the inequality α–1I – EXET > 0 and an arbitrary positive constant α > 0, both 

of which are involved in the determination of the upper boundary of the filtering error covari-
ance. Therefore, constant α is critical to defining the upper boundary for filtering. For retaining 
the filter parameters, the filtering and prediction error covariances are minimized. Based on 
Theorem 1 and the Kalman-like filtering, the upper boundary of the error covariance matrices 
can be defined:

( ) ( ) [ ] ( ) [ ] ( ) ( )0 0
0 0

T
Z Z Z Z Z

I I
E e t e t I t I t t     = Θ ≤ Θ = Θ        

 (22)

and

( ) ( ) [ ] ( ) [ ] ( ) ( )1 1 0 1 0 1 1
0 0

T
Z Z Z Z Z

I I
E e t e t I t I t t    + + = Σ + ≤ Σ + = Σ +        



  (23)

where ΘZ(t) and ∑Z(t + 1) are derived using eqs. (20) and (21), respectively.
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Theorem 2. Introduces the solutions of Θ  ¯ Z(t) and ¯ ∑Z(t + 1), for time-stamp t = k – τ(k), 
we let αt > 0 a sequence of positive scalars. If the following discrete-time Riccati-like recursive 
equations:

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
,

T T
Z Z Z t Z t t Z Z Z Zt t t E M E t t t t− −Θ = Σ + Σ Σ −Λ Ξ Λ (24)

( ) ( ) ( ) ( ) ( ) ( )1 1 1
,1 T T T T T

Z t Z t Z t t Z t Z Z Z t t t t t tt A t I E M E t A t t t B Q B α− − − Σ + = Σ + Σ −∆ Ξ ∆ + +  FF (25)

( ) ( ) 11 11 T T T T
t t t t t t t t t t tP t A P t E E A B Q Bα α

−− − + = − + +  FF (26)

where

	

( ) ( ) ( )
( ) ( ) ( )

1
,

1 1
,

andT T
Z Z t Z t t Z t

T T T
Z t Z t Z t t Z t t t t t t

t I t E M E t C

t A t I E M E t C B Sα

−

− −

 Λ = + Σ Σ 
 ∆ = Σ + Σ + +  FH

 
satisfy

 	 ( ) ( )1 1
,0 and 0T T

t t t Z t t t Z tP t E E M I E t Eα α− −− > = − Σ >

then Θ~
Z(t), ∑

~ 
Z (t + 1) and P(t + 1) are the positive definite solutions. The Kalman-like filter pa-

rameters can be derived from eqs. (11) and (12):

( ) 1
, ,

ˆ T
Z t t Z t Z t tC C I t E M E− = + Σ  (27)

( ) ( )1
,Z t Z ZK t t−= Λ Ξ (28)

( ) 1
, ,

ˆ T
Z t Z t Z t t t

A A I t E M E− = + Σ  (29)

( ) ( )1
,Z t Z ZL t t−= ∆ Ξ (30)

where

	 ( ) ( ) ( )1 1 1
, ,and ( )T T T T

Z t Z t Z t t Z t t t t t Z t t t tt C t I E M E t C R M I E P t Eα α− − − Ξ = Σ + Σ + + = − 
HH

 

Proof. The proof of this theorem is similar to the derivation shown in [26].

Delay compensation scheme

Note that the output z(t) is stored at time instant, k, with transmission delay τ(k). The 
received output, y(k), is used for the state estimation of x^(k |t ). It is worth mentioning that the 
transmission delays deteriorate the system performance, and our linear estimation-based delay 
compensation method is proposed to reduce the computational complexity and alleviate the 
consequence of transmission delays. Suppose that the current time instant is k and the received 
data packet is z(t). Meanwhile, the estimated state x^(t | t ) is yielded from eq. (11). In order to es-
timate the state x^(k | t ), the state prediction value x^(t + 1 | t ) is used for the linear compensation. 
Depending on the largest delay N and the current transmission delay τ(k ), x^(k | t )is obtained:

( ) ( ) ( )1
ˆ ˆ| 1 1|

k
x k t x t t

N
τ − 

= − + 
 

(31)

Remark 3. The proposed linear estimation-based method is for approximate state es-
timation with delay-free. Using the ZOH scheme, the estimated state for the most recent data 
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packet x^(t | t ) is stored with time-stamp before being transmitted. Therefore, the estimated state 
x^(k | k ) can be computed:

	
( ) ( )

( )

( ) ( )
1

ˆ ˆ| |
k

x k k A k x k k k k
τ

τ

τ τ τ
=

 
= − − −    
  
∏

where the stored signal at time instant k is x^[k  – τ(k) | k – τ(k) ]. On the other hand, if there are no 
arriving signals from the sensor at k, the estimated state x^(k | k ) will be compensated by one-step 
prediction of x^(k  – 1| k – 1 ) [16]. The computational complexity of the aforementioned one-step 
prediction and the linear estimation-based delay compensation is O(n3) and O(n2), respectively, 
where n expresses the dimension of the state. It is noteworthy that the proposed strategy is able to 
suppress the computational costs whilst improving the estimation efficiency.

On the other hand, at time instant k + 1, the arriving data is yZ(k + 1) with transmission 
delay τ(k + 1). Let s = k + 1 – τ(k + 1), then the received output is z(s) before being transmitted. 
Based on the disorder packets, three cases can be considered when we design the filter:

Case 1. For s = t or s = t + 1, the estimation x^Z(s | s ) is derived from eq. (11), and the 
filter parameters are computed by the iterative equations based on Theorem 2.

Case 2. For s > t + 1, the estimation x^Z(s | s ) will be compensated by one-step predic-
tion of x^Z(t + 1 | t + 1 ) derived from eqs. (11) and (12) with the artificial delay τst(k) = s – t > 1, 
and the reorganized state estimate sequence:

 	
( ) ( ) ( ){ }ˆ ˆ1 | 1 , , |st st

Z Zx t t x t k t kτ τ + + + + 

For the given systems shown in eqs. (1) and (2), the compensated state and filter pa-
rameters are computed using the recursive system shown in eqs. (24)-(30).

Case 3. For s < t, the estimated state x^Z(s | s ) is obtained from x^Z(t – s | t – s ) shownn in 
eq. (11). Thus, the filter parameters are updated using the recursive form based on Theorem 2.

As mentioned before, the solution of x^Z[k | k – τ(k) ] applies to the linear estima-
tion-based compensation method derived from eq. (31).

Filtering for logic ZOH

Here the robust finite horizon Kalman-like filtering is designed based on the stan-
dard logic ZOH scheme. At the current sampling time instant k, the received data packet is  
z[k – τ′(k)], before being transmitted, with transmission delay τ′(k). As mentioned before,  
τ′(k) = τ(k) – β(k) and β(k) > 0. Let r = k – τ′(k), the stored measurement is then reorganized 
using eqs. (2) and (9):

( ) ( ) ( ) ( )LZ r r r r ry k z r C F E x r v= = + +H (32)
Suppose that the filter can be used to estimate the optimal state x^LZ(r | r ), depending on 

the stored data {yLZ(0),..., yLZ (k – 1), yLZ (k)}.
The largest transmission delay does not exceed N steps, furthermore, τ′(k) ≤ τ(k) as 

the received valid data packet is close to the current signal. The logic ZOH is used to choose 
time-stamped signals with τ′(k)-step transmission delays, i. e. r = k – τ′(k), and the structure of 
the robust Kalman-like filtering is proposed:

( ) ( ) ( ) ( ), ,
ˆˆ ˆ ˆ| | 1 | 1LZ LZ LZ r LZ r LZx r r x r r K z r C x r r = − + − −  (33)

( ) ( ) ( ) ( ), , ,
ˆ ˆˆ ˆ ˆ1 | | 1 | 1LZ LZ r LZ LZ r LZ r LZx r r A x r r L z r C x r r + = − + − −  (34)

where C^
LZ,r, KLZ,r, A^

LZ,r, and LLZ,r, are the filter parameters.
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To obtain the filter parameters and the upper boundary from the estimation covariance 
matrices, Theorem 3 presents the solution of the proposed filtering method. The subscript Z rep-
resented by the ZOH is replaced by the logic ZOH denoted by LZ, and the received time stamp 
is expressed as r instead of t .

Theorem 3. At current time instant k, for the measurement yLZ(k) with transmission 
delay τ′(k), z(r) with time-stamp r = k – τ′(k) is received. Let αr be a positive scalar, then ∑̄(r) 
and P(r) are the positive definite solutions for discrete-time Riccati-like iterations:

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
,

T T
LZ LZ LZ r LZ r r LZ LZ LZ LZr r r E M E r r r r− −Θ = Σ + Σ Σ − Λ Ξ Λ (35)

( ) ( ) ( ) ( ) ( ) ( )1 1 1
,1 T T T T T

LZ r LZ r LZ r r LZ r LZ LZ LZ r r r r r rr A r I E M E r A r r r B Q B α− − − Σ + = Σ + Σ − ∆ Ξ ∆ + +  F F (36)

( ) ( )
11 11 T T T T

r r r r r r r r r r rP r A P r E E A B Q Bα α
−− − + = − + +  F F (37)

where 

	

( ) ( ) ( ) ( )
( ) ( ) ( )

1
,

1 1
,

T T T
LZ LZ r LZ r LZ r r LZ r

T T T
LZ r LZ r LZ r r LZ r r r r r r

r r C r E M E r C

r A r I E M E r C B Sα

−

− −

Λ = Σ + Σ Σ

 ∆ = Σ + Σ + +  F H

satisfying

	 ( ) ( )1 1
,0 and 0T T

r r r LZ r r r LZ rP r E E M I E r Eα α− −− > = − Σ >  
Then, the Kalman-like filtering shown in eqs. (33) and (34) has the parameters:

( ) 1
, ,

ˆ T
LZ r r LZ r LZ r rC C I r E M E− = + Σ  (38)

( ) ( )1
,LZ r LZ LZK r r−= Λ Ξ (39)

( ) 1
, ,

ˆ T
LZ r r LZ r LZ r rA A I r E M E− = + Σ  (40)

( ) ( )1
,LZ r LZ LZL r r−= ∆ Ξ (41)

where

 	 ( ) ( ) ( ) ( )1 1 1
, ,andT T T T

LZ r LZ r LZ r r LZ r r r r r LZ r r r rr C r I E M E r C R M I E P r Eα α− − − Ξ = Σ + Σ + + = − 
HH

Proof. Different from the ZOH scheme, the received measurement yLZ (k) is represent-
ed by the valid arriving data z(r) with r = k – τ′(k), and τ′(k) = τ(k) – β (k). Accordingly, the filter 
parameters C^

LZ,r, KLZ,r, A^
LZ,r, and LLZ,r are calculated by different signal reconstruction schemes. 

Subsequently, the proof is similar to that of Theorem 2. 
The obtained state estimation x^ (r | r) is used for compensating x^ (k | r) at the current 

time instant k. For the logic ZOH, we assume that the largest transmission delay is N, and 
the filter receives the ACK data packet z(r) with transmission delay τ′(k) at time k. Similar to 
the linear estimation-based compensation approach, the estimated state x^LZ

 (r | r) derived from  
eq. (33) is used for compensating the predicted state x^LZ

 (k | r), which is represented:

( ) ( ) ( )
1

ˆ ˆ| 1 1|LZ LZ

k
x k r x r r

N
τ ′ − 

= − + 
 

(42)
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Remark 4. The logic ZOH has the transmission delay as τ′(k) ≤ τ(k). Different from 
the ZOH, based on the linear compensation strategy, the estimated state x^ (k | r) conforms to the 
inequality  x^Z (k | r) ≤ x^LZ (k | r). In this case, the signal reconstruction scheme using logic ZOH 
can discard out-of-order packets and improve the estimation performance for the networked 
systems.

For the next sampling time k + 1, the arriving data is yLZ (k + 1) with delay τ′(k + 1). 
Meanwhile, the received output is z(s) assuming s = k +1 – τ′(k + 1). Since the disordered pack-
ets are discarded, we shall have s ≥ r. The designed filter x^LZ

 (s | s) has two cases:
Case 1. For s = r or s = r + 1, the state estimation x^LZ

 (s | s) is derived from eq. (33), 
and the filter parameters are calculated by the recursive equations based on eqs. (33) and (34), 
and Theorem 3.

Case 2. For s > r +1, the estimated state x^LZ
 (s | s) will be compensated by τ′(k)-step 

prediction, which is calculated from eqs. (33) and (34) with the artificial delay τsr(k) = s – r > 1. 
Thus, based on x^LZ

 (r + 1 | r + 1), the reorganized state estimation sequence is compensated by 
one-step:

( ) ( ) ( ){ }ˆ ˆ1 | 1 , , |sr sr
LZ LZx r r x r k r kτ τ + + + +  (43)

For the given systems shown in eqs. (1) and (2), the missing states are compensated 
and the filter parameters are computed by the recursions shown in eqs. (35)-(41). The proposed 
approach can be summarized in Algorithm I using the logic ZOH scheme.

Remark 5. A natural way of handling the finite-horizon Kalman filtering is to aug-
ment the system states [20, 23]. However, as seen from Theorem 1, such a state augmentation 
approach leads to a significant increase of the system dimension and thereby brings heavy 
computational burden to the recursive filtering algorithm. Compared to the state augmentation 
method, our proposed finite horizon Kalman-like recursive filter employing the signal re-order-
ing scheme shown in eqs. (11), (12), (33), and (34) does not suffer from the expensive computa-

Algorithm I. Algorithm of the robust finite horizon filtering using the logic ZOH

Input: The initial state x(0), the estimated state x^LZ (0 | –1) = µ0 with variance P0, the upper  
boundary of the prediction error covariance ∑ ¯ LZ (0) and the positive scalar α0, the sample time iter 

Output: The filtering error covariance ∑ ¯ LZ(k + 1) and P(k + 1)

   for k = 1 to iter 
	 set r = k – τ′(k),	 //      τ′(k)-step delays
	 if   τ sr(k) = 0   or   τ sr(k) = 1
	          calculate Θ ¯LZ (r) using eq. (35),	 //        Θ ¯LZ (r) is the upper boundary/
	          solve C^ 

LZ,t , KLZ,t, A
^
LZ,t, and LZ,t, given in eqs. (38)-(41),	//     they are derived from ∑ ¯ LZ(r) 

	          compute x  ̂
LZ

 (r | r) in eq. (33), and x  ̂
LZ

 (r + 1 | r) in eq. (34), // design filter and predictor
  	          solve ∑ ¯ LZ(r | 1) using eq. (36), and P(r + 1) using eq. (37), // filtering and state covariance
	 else if τsr(k) > 1 
	           x  ̂

LZ
 (s | s) is compensated by x  ̂

LZ
 (r + 1 | r + 1) using eqs. (33) and (34)

	 end if
	 calculate x  ̂

LZ
 (k | r) by eq. (42),     //      the compensation of the estimation-based state

	 define s = k + 1 – τ′(k) + 1;    //     τ′(k + 1)-step delays
	 set τsr(k) = s – r ;	 //      the artificial delay
   end
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tion problem. The filter parameters and the upper boundary of minimizing the error covariance 
matrices have been discussed in [20, 23]. In our work, Theorems 2 and 3 lead to the filter gain 
matrices K and L for obtaining the upper boundary and improving the estimation accuracy of 
the stochastic uncertain systems. In addition, as pointed out in the linear estimation-based de-
lay compensation method, the proposed filter avoids using the traditional one-step prediction 
approach so that it has satisfactory computational efficiency to handle random transmission 
delays. Therefore, the proposed finite horizon filtering approach is suitable for addressing the 
issue of the distributed state estimation.

Simulation results

In this section, numerical evaluation is conducted to illustrate the effectiveness of the 
proposed robust finite horizon Kalman-like filtering approach.

The target tracking systems with intermittent measurements are a class of stochastic 
uncertain systems presented [15, 20, 25]:

( ) ( )

2 2

0.9
2 2

1 0 0.9 , 1,2,
0 0 0.9 1

k k k k

T TT

x k T F E x k T w k

    
    
    
 + = + + =   
    
            

F (44)

( ) ( ) ( )k k k k kz k C F E x k v= + +H (45)

k kw η= (46)

k kv wζ= (47)
where we set T = 0.1 second as the sample period. The upper limit of the transmission delay is as-
sumed to be N = 5, and the time-varying parametric uncertainty satisfies Fk = sin(0.6k). The state  
x(k) = (sk, s⋅k, s⋅⋅k)T is composed of position, velocity and acceleration, respectively, of the tar-
get at time instant kT, ηk ∈ R is the zero mean white noise with variance ση

2 = 0.09, which is 
uncorrelated with the other signals. Set the state transition matrices as Fk = [0.1 0.1 0.1]T,  
Ek = [0.02 0.02 0.02], Ck = [0.6 0.8 1], and the measurement matrix is Hk = 0.8. Taking into 
account the correlation between the process noise and the measurement noise, the variable ζ 
shown in eq. (47) determines the correlated strength and here ζ = 2. Without loss of generality, 
the process noise wk shown in eq. (46) with unity covariance Qk. Meanwhile, the covariances 
are denoted as Rk = ζQkζ T and Sk = Qkζ T, given in eq. (47), respectively.

Set the initial values to be αk = 3, x^(0 |0 ) = µ0 = E[x(0)] = (1 1 1)T and P(0 |0 ) = 0.01I3. 
The proposed method is evaluated using 300 sampling points, and the results are obtained, 
based on 100 Monte-Carlo simulations.

Figures 2(a)-2(d) show the traces of the filtering error covariances and the estimated 
state with delay-free, which are calculated using the proposed filtering method and the im-
proved robust finite-horizon Kalman filtering (IRFHKF) introduced in [20]. To compare the es-
timation proposed method is very close to the actual state and performance of the both methods, 
we observe that the upper boundary of the filtering error covariance employing the proposed 
filter is remarkably lower than that of the IRFHKF method. The dynamic tracking trajectory of 
the proposed method is very close to the actual state.
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Figure 2. Comparison of the proposed method and IRFHKF method; (a) upper boundary  
of filtering error covariance, (b) comparison of the estimated state for position, (c) comparison  
of the estimated state for velocity, and (d) comparison of the estimated state for acceleration

Table 1. Comparison of the filtering error covariances
Method Position Velocity Acceleration Trace

Proposed method 0.0096~0.0150 0.0016~0.0100 0.0100~0.0372 0.0300~0.0533
IRFHKF 0.0100~0.0267 0.0100~0.0235 0.0100~0.1779 0.0300~0.2280

The range of the performance index from the minimum to the maximum is presented 
in tab. 1. Since the upper boundary of the error covariance by the proposed method is less than 
IRFHKF, the proposed filtering method has relatively small errors for the estimated state.

To further illustrate the effectiveness of the proposed method, the corresponding filter-
ing results of the estimated states are shown in fig. 3, which are obtained by eqs. (11) and (12) 
in Theorem 2 for ZOH and eqs. (33) and (34) in Theorem 3 for logic ZOH, respectively.

Comparing IRFHKF, ZOH and logic ZOH schemes, figs. 3(a)-3(c) show that the proposed 
system can handle the packet loss and transmission delay. Furthermore, taking into account the net-
work-induced random transmission delays, the logic ZOH scheme has better performance for target 
tacking and computational efficiency using the linear estimation-based compensation strategy.

Conclusion

With the aid of a linear delay compensation strategy, the state estimation problem 
has been investigated for discrete-time stochastic uncertain systems with correlated noise. 
Considering networked-induced transmission delays and out-of-order packets, a new system 
model has been established using the ZOH and logic ZOH schemes, respectively, to deal with 
packet disorders caused by sequence re-ordering. Based on the established model, a robust 
finite horizon Kalman-like filter has been designed to guarantee an optimized upper boundary. 
For random transmission delays, a linear estimation-based delay compensation scheme has 
been proposed to improve the filter performance whilst reducing the computational complexity. 
Compared with the ZOH and the logic ZOH schemes, the proposed modelling and filtering 
strategies have superior performance to drop packet disorders and reduce the upper boundary 
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of the estimation error covariances. A target tracking system and numerical simulations have 
been performed to demonstrate the effectiveness of the proposed approach. The state estimation 
problem can be also modelled by the variational principle, and the stochastic uncertain can be 
effectively described by the fractal calculus [17], which we will discuss in a forthcoming paper.
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Nomenclature

E(⋅)	 – mathematical expectation operator
M –1	 – inverse of the positive-definite matrix M
M 	 – real symmetric positive-definite matrix (> 0)
Rr 	 – r-dimensional Euclidean space
Rr×r	 – r×r-dimensional Euclidean space
tr(M)	 – trace of matrix M

Greek symbol

δk–l 	 – Kronecker function, i. e. δk–l = 1 if k = l, 
otherwise δk–l = 0 if k ≠ 1

Superscript

T 	 – transpose
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