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In this paper is investigating the theory of generalized thermoelasticity under two 
temperature is used to solve boundary value problems of 2-D half-space its bound-
ary with different types of heating under gravity effect. The governing equations 
are solved using new mathematical methods under the context of Lord-Shulman, 
Green-Naghdi theory of type III (G-N III) and the three-phase-lag model to inves-
tigate the surface waves in an isotropic elastic medium subjected to gravity field, 
magnetic field, and initial stress. The general solution obtained is applied to a spe-
cific problem of a half-space and the interaction with each other under the influence 
of gravity. The physical domain by using the harmonic vibrations is used to obtain 
the exact expressions for the Waves velocity and attenuation coefficients for Stoneley 
waves, Love waves, and Rayleigh waves. Comparisons are made with the results 
between the three theories. Numerical work is also performed for a suitable material 
with the aim of illustrating the results. The results obtained are calculated numerical-
ly and presented graphically with some comparisons in the absence and the presence 
the influence of gravity, initial stress and magnetic field. It clears that the results ob-
tained agree with the physical practical results and agree with the previous results if 
the gravity, two temperature, and initial stress neglect as special case from this study.
Key words: generalized thermoelasticity, magnetic field, surface waves,  

two temperature, three-phase-lag model Lord-Shulman theory, gravity

Introduction

Recently, the theory of classical coupled thermoelasticity has more attentions in di-
verse topics because its applicant and interesting in industry, science and technology. Biot [1] is 
the prior study the classical coupled thermoelastic theory for strain-rate term in the Fourier heat 
conduction equation in parabolic-type heat conduction equation form (diffusion equation). A 
generalized thermoelasticity theories have been developed by Lord and Shulman [2] as well as 
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Green and Lindsay [3] determining the finite speed for thermal wave in solids. Brief reviews of 
this topic have been reported by Chandrasekharaiah et al. [4, 5]. Amin et al. [6] discussed surface 
waves propagation in a generalized thermoelastic media with magnetic field and rotation and its 
applications in geophysics and engineering. Among the authors who considered the generallized 
magnetothermoelastic equations are Nayfeh and Nemat-Nasser [7] who studied the propagation 
of plane waves in a solid under the influence of an electromagnetic field. They have obtained the 
governing equations in the general case and the solution for some particular cases. Ezzat et al. [8] 
have established the model of 2-D equations of generalized magneto-thermoelasticity.

Youssef and El-Bary [9] analysis the generalized thermoelastic infinite layer problem 
under three theories using state space approach. The theory of heat conduction in a deformable 
body, formulated by Chen and Gurtin [10] and Youssef [11] presented a new model of ther-
moelasticity depends on two temperatures T and φ in generalized form. Dual phase lag model 
problem on an infinite non-homogeneous spherical cavity solid under magnetothermoelasticity 
theory is investigated also [12]. Love [13] discussed the gravity field effect on the velocity of 
Rayleigh waves that show that it increases to a significant extent by influence of gravity. De and 
Sengupta [14, 15] studied surface waves propagation in an elastic layer and Lamb’s phenom-
enon. The propagation of waves in a thermoelastic layer with gravity discussed by Sengupta 
and Acharya [16]. Das et al. [17] investigated surface waves under the gravity and rotation in a 
non-homogeneous in generalized thermoelastic solid. Abd-Alla and Ahmed [18] and Abd-Alla 
[19] presented the influences of rotation, magnetic field, initial stress and gravity on Rayleigh 
waves in a homogeneous orthotropic elastic half-space. Lotfy et al. [20-24] studied normal mode 
method for two-temperature generalized thermoelasticity under thermal shock problem.

Recently, Abo-Dahab [25] investigated surface waves in coupled and generalized 
thermoelasticity. Abo-Dahab [26] discussed GL model on propagation of surface waves in mag-
neto-thermoelastic materials with voids and initial stress. Abo-Dahab et al. [27] pointed out 
problem of rotation, magnetic field and stiffness effect on propagation of surface waves in an 
elastic layer lying over a generalized thermo-elastic diffusive half-space with imperfect bound-
ary. Abd-Alla et al. [28] investigated the effect of several fields on a generalized thermoelastic 
medium with voids in the context of Lord-Shulman or Dual-Phase-Lag Models.

In this paper, the theory of two temperature generalized thermoelasticity is used to 
solve boundary value problems of 2-D half-space its boundary with different types of heating 
under gravity effect. The governing equations are solved using new mathematical methods 
under the context of Lord-Shulman (L-S), Green-Naghdi theory of type III (G-N III), and the 
three-phase-lag model (3PHL) to investigate the surface waves in an isotropic elastic medium 
subjected to gravity field, magnetic field and initial stress. The general solution obtained is 
applied to a specific problem of a half-space and the interaction with each other under the in-
fluence of gravity. The physical domain by using the harmonic vibrations is used to obtain the 
exact expressions for the Waves velocity and attenuation coefficients for: 
–– Stoneley waves 
–– Love waves
–– Rayleigh waves

Comparisons are made with the results between the three theories. Numerical work 
is also performed for a suitable material with the aim of illustrating the results. The results 
obtained are calculated numerically and presented graphically with some comparisons in the 
absence and the presence the influence of gravity, initial stress and magnetic field. If the gravity, 
two temperature, and initial stress neglect, the results obtained agree with the physical practical 
results and agree with the previous results of [25] as special case from this study.
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Formulation of the problem

Considering two semi-infinite elastic 
anisotropic solid media denoted ∐1 and ∐2 are 
perfectly welded in contact to prevent any rel-
ative motion or sliding before and after the dis-
turbances and that the continuity of displace-
ment, stress, etc. Two media assumed have 
mechanical properties. These media extend to 
an infinite great distance from the origin and 
are separated by a plane horizontal boundary 
and ∐2 is to be taken above ∐1. Let Oxyz be 
a set of orthogonal Cartesian co-ordinates, we 
consider the possibility of a type of wave trav-
elling in the direction Ox as shown in fig. 1.

Formulation of the problem

–– The constitutive equation:

( ) ( ), ,
12 ,
2ij ij ij ij ij ij j i i jP e T Pw w u uσ λθ δ µ γ δ= − + − − = − (1)

The heat conduction equation:
22 2

* * * *
02 22 1 ,

2
q

v T q e vK K C T T e K K
t tt t υ

τ
τ τ ϕ τ ρ γ τ τ

  ∂ ∂ ∂ ∂   + + ∇ = + + + = +      ∂ ∂∂ ∂   



 (2)

–– The equation of motion with body force takes the form:

, , ( , 1, 2,3)ji j i iF u i jσ ρ+ = = (3)
–– The relation between the heat conduction and dynamical heat:

2T aϕ ϕ− = ∇ (4)
Taking into account the absence of displacement current, the linearized Maxwell’s 

equations governing the magnetic field for a slowly moving solid medium having a perfect 
electrical conductivity:

( )
( )

0

0 0 0 0

curl , curl ,

curl , div 0, div 0, ( , , ), (0,0, )

e eh J E h E u H

h u H h E H H h x y t H H

µ µ= = − = − ×

= × = = = + =

 
   



  
    



(5)

Using eq. (5) we obtain:
2 2
0 0, , 0x e z e y

e eF H F H F
x z

µ µ∂ ∂
= = =

∂ ∂ (6)

Maxwell’s stress equation can be given:

( ) , , 1, 2,3ij e i j j i k k ijH h H h H h i jτ µ δ = + − × =  (7a)

where
 
τij is Maxwell’s stress tensor

2
0 , 0xx zz e xz

u vH
x z

τ τ µ τ∂ ∂ = = + = ∂ ∂ 
(7b)

Figure 1. Schematic of the problem
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Equations (1) and (2) are the field equations of the generalized thermoelastic solid:
–– The (L-S) theory: K* = τv = τT = τ2

q = 0, τq > 0
–– The (G-N II) theory: τv = τT = τq = 0
–– The (3PHL) theory: τv < τT < τq > 0

Then on dimensional variables take the form:

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

02 3
0 0

02
0

0

,
, , , , , , , , ,

,
, , , , , , , ,

ij ij
ij ij

T v q T v q

gg x z u v C x z u v
C C

T T
t C t

T

σ τ
σ τ η

ρ η
ϕ

τ τ τ η τ τ τ θ ϕ

′
′ ′ ′ ′ ′ ′= = =

−
′ ′ ′ ′ ′ ′= =

(8)

where η = (ρCe)/K, C2
2 = µ/ρ, and = (λ +2µ)/ρ.

Substitute from eq. (5) into eqs. (2)-(4), we get: 
2 2

22
2

2

1
2
q

k v T q
e

T
C C C T e

t t t Ct
γϕ θ
ρ

   ∂∂ ∂ ∂
+ + ∇ − + + +     ∂ ∂ ∂ ∂    



 (9)

2ϕ θ ϕ− = ∇ (10)
where 

	
2 2
0 0

, ,v T
k v k

ee e

KKC = C C
CC C C C

τ ητ
ρρ ρ

∗ ∗∗

= =

Equations of motion are:
2

1 2 0
e wa u a a g u
x x x

θ β∗ ∂ ∂ ∂
∇ + − + =

∂ ∂ ∂
 (11)

2
1 2 0

e ua w a a g w
z z x

θ β∗ ∂ ∂ ∂
∇ + − + =

∂ ∂ ∂
 (12)

where

	

2
0 0

1 2 02 2 2
0 0 0

2 2 22, , ,
2 2

e

e

P H TPa a a
C C C C

λ µ µ γγ µε
ρ ρ ρ ρ

∗ + + +−
= = = =

Assuming the scalar and vector potential functions ∏ and ψ:

u w
x z z x

ψ ψ∂∏ ∂ ∂∏ ∂
= − = +

∂ ∂ ∂ ∂
(13)

Using eq. (13) into eqs. (11) and (12) we get:
2

2 * *
3 02 0a a

xt
ψβ θ∗

 ∂ ∂
∇ − ∏− − =  ∂∂ 

(14)

2
2

42 0a
xt

β ψ∗∗ ∂ ∂∏
∇ − + ∂ =  ∂∂ 

(15)

where

	

2
0 0 3

0 3 42
0 1 1

1, , , , ,
1 1 1

e
H

H H H

H a agR a a a
R R RC a a

µ ββ β
ρ

∗
∗ ∗ ∗ ∗ ∗∗

∗ ∗= = = = = =
+ + +
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The temperature eq. (9) tends:

( )
22 2 2

2 2
2 21

2 2
q

k v T q

T
C C C T

t t tt t
ϕ θ ε

  ∂ ∂ ∂ ∂ ∂
+ + ∇ − + + + ∇ ∏    ∂ ∂ ∂∂ ∂   

(16)

and similar relations in M2 with replaced ρ, λ, µ, α, γ, by ρ*, λ*, µ*, α*, γ*.

Solution of the problem

To solve eqs. (7), (11)-(13), we assume the following normal mode method:

( ) ( ), , ( )ei x ct
ij ijx z t z ωψ ϕ θ σ ψ ϕ θ σ∗ ∗ ∗ ∗ ∗ −  π, , , , = π , , , ,    (17)

Substituting from eq. (17), into eqs. (14) and (15) using D = d/dz: 

2 * ** * * *
1 3 0 0D A a aψ θ − π − − =  (18)

2 * *
2 4 0D A aψ ∗ − + π =  (19)

Equation (7) tends: 
2 * 1 *

3 0D A ϕ β θ− − + =  (20)

Also eq. (16) tends:

( ) ( )2 2 2 2 0D B D Aω ϕ ω θ∗ ∗ ∗− + − π + = (21)

where

	
( ) ( )

2
2 2 2 2

1 3 3 2 4 4 3
11 , , 1 , ,A c a i a A c a i a A βωω β ω ω β ω

β
∗ ∗∗ ∗ ∗∗ ∗∗ ∗ +

= − = = − = =

where

	

( )

2

2 2

1
2

,

q
q

k v T

i
i c

B A A c
C i C i cC

ωτ
ω τ

ε ω
ω ω

  
− −     = =  − − 

 
 

Eliminating, π*, ψ*, φ*, and θ* from eqs. (18)-(21), we obtain:

	

2
1 3 0

2
4 2

2 1
3

2 2 2 2

0
0 0

0
0 0

( ) 0

D A a a
a D A

D A
B D D A

β
ω ω

∗∗ ∗

∗

−

− − −
−

=
−

− −

which tends:
6 4 2 ( ) 0D ED FD G x∗ + + + π =  (22)
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where
( )( ) ( )

( )
( ) ( )( ) ( )

( )
( )

( )

1 1 2 2
1 2 3 0 2 2

1
0

1 1 2 2
1 2 3 4 1 2 3 0 2 3 2 2

1
0

1 2 2
3 1 2 3 4 0 2 3

1
0

A A A AA a B A A
E

A a B

A A A a a A A AA a B A A A A
F

A a B

AA A A a a a B A A
G

A a B

β β ω ω

β

β β ω ω

β

β ω ω

β

− − ∗

− ∗

− ∗∗ ∗ − ∗

− ∗

− ∗∗ ∗ ∗

− ∗

− + − + + + +
= −

− +

   − + − + − + + + +   =
− +

 − + − =
− +

(23)

Also, in a similar manner, we get:
( )( )6 4 2 , , , 0ijD ED FD G xψ ϕ θ σ∗ ∗ ∗ ∗ + + + =  (24)

which can be factorized:

 ( )( )( )( )( )2 2 2 2 2 2
1 2 3 , , , 0ijD k D k D k xψ ϕ θ σ∗ ∗ ∗ ∗− − − = (25)

where k2
n(n = 1, 2, 3) are the roots of the characteristic equation:

6 4 2 0K EK FK G+ + + = (26)
The solution of eq. (25), as z → ∞, take the form:

( ) ( )
3

1
expn n

n
z M k z∗

=

π = −∑ (27)

( ) ( )
3

1
expn n

n
z M k zθ ∗

=

′= −∑ (28)

( ) ( )
3

1
expn n

n
z M k zψ ∗

=

′′= −∑ (29)

( ) ( )
3

1
expn n

n
z M k zϕ∗

=

′′′= −∑ (30)

since
( )u z i Dω ψ∗ ∗ ∗= π − (31)

( )v z D iωψ∗ ∗ ∗= π + (32)

( )e z i u Dvω∗ ∗ ∗= + (33)
Using eqs. (31) and (32) in order to obtain the displacements amplitudes u and v tak-

ing into account that are bounded as x → ∞, we get:

( ) ( )
3

1
expn n n n

n
u z i M k M k zω∗

=

′′= + −  ∑ (34)

( ) ( ) ( )
3

1
expn n n n

n
v z i k M i M k zω ω∗

=

′′= − + −∑ (35)

where Mn, M′n, M″ n, and M‴ n are parameters depend on β, c, and ω. 
Substituting from eqs. (27)-(30) into eqs. (18)-(21):

( )( )
( )

2 2
1 2 3 4

12
0 2

n n
n n n

n

k A k A a a
M M H M

a k A

∗∗ ∗

∗

− − +
′ = =

−
(36)
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4
22

2
n n n n

n

aM M H M
K A

∗

′′ = =
− (37)

( )( )
( )( )

2 2
1 2 3 41

32 2
0 2 3

n n
n n n n

n n

k A k A a a
M M H M

a k A k A
β

∗∗ ∗
−

∗

 − − +
′′′  = − =

− −  
(38)

where

	

( )( )
( )

( )( )
( )( )

2 2
1 2 3 4 4

1 2 22
20 2

2 2
1 2 3 41

3 2 2
0 2 3

,

, 1, 2,3

n n
n n

nn

n n
n

n n

k A k A a a aH H
K Aa k A

k A k A a a
H n

a k A k A
β

∗∗ ∗ ∗

∗

∗∗ ∗
−

∗

− − +
= = −

−−

− − +
= − =

− −

thus

( ) ( )
3

1
1

expn n n
n

z H M k zθ ∗

=

= −∑ (39)

( ) ( )
3

2
1

expn n n
n

z H M k zψ ∗

=

= −∑ (40)

( ) ( )
3

3
1

expn n n
n

z H M k zϕ∗

=

= −∑ (41)

From eqs. (5), (14), and (33)-(35), into eq. (1), we can obtain:

( ) ( )
3

1
exp

2xx n n n
n

Pz h M k zσ
λ µ

∗

=

= − −
+∑ (42)

( ) ( )
3

1
exp

2zz n n n
n

Pz h M k zσ
λ µ

∗

=

′= − −
+∑ (43)

( ) ( )
3

1
expxz n n n

n
z h M k zσ ∗

=

′′= −∑ (44)

( ) ( )2
0 2 2xz e n n n n nH k k i H i i k Hτ µ ω ω ω∗ = − − +   (45)

( ) ( ) 0
2 2 12 2n n n n n n n

T
h i i k H k k i H H

γλω ω ω
λ µ λ µ

= + + − −
+ +

(46)

( ) ( )
2 12 2

n n
n n n n n

i i k H
h k k i H H

ωλ ω
λ µ λ µ

′ = − + −
+ +

(47)

( ) ( )2 2
2 2

2 2n n n n n n

P P

h k i k H i k i H
µ µ

ω ω ω
λ µ λ µ

   + −   
′′ = − + − − +   

+ +      
   

(48)

Boundary conditions (application)

We will take the following application considering the thermal shock:
–– θ(x,0, t) = f (x,0, t)



Bouslimi, J., et al.: Magnetic Field on Surface Waves Propagation in Gravitational ... 
S292	 THERMAL SCIENCE: Year 2020, Vol. 24, Suppl. 1, pp. S285-S299

which tends:
3

1
1

n n
n

H M f ∗

=

=∑ (49)

–– σzz + τzz = –P/ρC2
0

which with helping eq. (7) trends:
3

1
0n n

n
h M

=

′ =∑ (50)

where

	
( ) ( )

2 2
0 0 0

2 2 1
2

2 2 2
e e

n n n n n n n
H H T

h k k i H i i k H H
λ µ µ λ µ γ

ω ω ω
λ µ λ µ λ µ

    + + +′ = − − + −    + + +     

finally
––  σxz + τxz = 0 

winich tends:
3

1
0n n

n
h M

=

′′ =∑ (51)

Equations (45)-(47) can be re-written in the matrices form:

1 11 12 13

2 1 2 3

3 1 2 3

0
0

M H H H f
M h h h
M h h h

∗    
    ′ ′ ′=     

    ′′ ′′ ′′    

(52)

Special cases

Stoneley waves 

In Stoneley waves we assume that the waves are propagated along the common 
boundary of two semi-infinite media ∐1 and ∐2. 
–– The components of displacement at the surface between the two media ∐1 and ∐2 must be 

continuous independent on position and time, this means:

[ ] [ ]1 2, , , at 0u v u v z= =  (53)

Substituting from eqs. (34) and (35) we get:

( ) ( )
3 3

2 1 2 2
1 1

n n n n n n
n n

i k H M i k H Mω ω
= =

   − = −   
   
∑ ∑  (54)

( ) ( )
3 3

2 1 2 2
1 1

n n n n n n
n n

k i H M k i H Mω ω
= =

   + = +   
   
∑ ∑  (55)

–– The total stress components σxx, σxz, σzz, τxx, τxz, and τzz, must be continuous at the boundary  
z =0:

1 2, , , ,xy xy xx xx zz zz xy xy xx xx zz zzσ τ σ τ σ τ σ τ σ τ σ τ   + + + = + + +     (56)
Substituting from eqs. (39)-(42) we obtain:

3 3

1 2
1 1

n n n n
n n

h M h M
= =

   ′′ ′′=   
   
∑ ∑  (57)
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3 3

1 2
1 1

n n n n
n n

h M h M
= =

   =   
   
∑ ∑  (58)

3 3

1 2
1 1

n n n n
n n

h M h M
= =

   ′ ′=   
   
∑ ∑  (59)

–– Thermal insulated (i. e.):

	
1 2z z

θ θ∗ ∗   ∂ ∂
=   ∂ ∂   

 

Substitute from eq. (39), we get:
3 3

1 1 1 2
1 1

n n n n n n
n n

K H M K H M
= =

   =   
   
∑ ∑  (60)

Therefore, eqs. (54), (55), and (57)-(60) determine the velocity equation of Stoneley 
waves in anelastic solid media under with gravity.

It is shown from eqs. (54), (55), and (57)-(60) that the Stoneley waves velocity de-
pends on the two temperature of the material medium, densities of both media and gravity. 
Since the wave velocity eqs. (54), (55), and (57)-(60) for Stoneley waves under the present 
circumstances depends on the particular value of ω and creates a dispersion of a general wave 
form.

Love waves

–– The displacement components at the surface between the two media for medium ∐1 must 
be continuous at all times and positions, but in medium ∐2 must continuous at all time for 
position z = L (thickness) (i. e., for Love waves considering the first medium is half space z 
> 0, but the second medium with thickness z = L).

This means: 

[ ] ( ) [ ] ( )1 2, , ,u v z u v z L= =  (61)
Substituting from eqs. (34) and (35) we get:

( ) ( ) ( ) ( )
3 3

2 1 2 2
1 1

exp expn n n n n n n
n n

i k H Mn k z i k H M k Lω ω
= =

   − − = − −   
   
∑ ∑  (62)

 

( ) ( ) ( ) ( )
3 3

2 1 2 2
1 1

exp expn n n n n n n n
n n

k i H M k z k i H M k Lω ω
= =

   + − = + −   
   
∑ ∑  (63)

 –– The total stress components σxx, σxz, σzz, τxx, τxz, and τzz, must be continuous in medium at all 
times and positions but in medium ∐2 must continuous at all time for position z = L (thick-
ness):

1 2[ , , ] ( ) [ , , ] , ( )xy xy xx xx zz zz xy xy xx xx zz zzz z Lσ τ σ τ σ τ σ τ σ τ σ τ+ + + = + + + =  (64)
Substituting from eqs. (39)-(42) we obtain:

( ) ( )
3 3

1 2
1 1

exp expn n n n n n
n n

h M k z h M k L
= =

   ′′ ′′− = −   
   
∑ ∑  (65)
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( ) ( )
3 3

1 2
1 1

exp expn n n n n n
n n

h M k z h M k L
= =

   − = −   
   
∑ ∑  (66)

( ) ( )
3 3

1 2
1 1

exp expn n n n n n
n n

h M k z h M k L
= =

   ′ ′− = −   
   
∑ ∑  (67)

–– Thermal insulated, i. e.

	
( ) ( )1 2 ,z z L

z z
θ θ∗ ∗   ∂ ∂

= =   ∂ ∂   
 

Substitute from eq. (39):

( ) ( )
3 3

1 1 1 2
1 1

exp expn n n n n n n n
n n

K H M k z K H M k L
= =

   − = −   
   
∑ ∑  (68)

Rayleigh waves

Concerns the Rayleigh waves in anisotropic fibre-reinforced elastic media, the medium 
∐2 will replaced by a vacuum. So the stress boundary condition in this case may be expressed: 
	 σxy + τxy = σxx + τxx = σzz + τzz = 0

Numerical results

For illustrating the analytical procedure, we will consider a numerical example for 
which appropriate the media considered in the previous calculations. The results display the 
variation of displacement, temperature, and stress considering two theories for the copper ma-
terial [26].

Table 1. Physical constants of the copper material [26]
Parameter Value Parameter Value Parameter  Value

λ 759 ⋅ 109 N/m2 K 386 N/Ks ε 0.0168

µ 386 ⋅ 1010 kg/ms2 CE 383.1 J/kgk a = ξ 1
ρ 7800 kg/m2 α –1.28N/m2 ω0 2
T0 293 K αt 1.78 ⋅ 10–5 N/m2 η 8886.73 m/s2

The computations were carried out for a value of ω = ω0 + iξ and time t = 0.001 
seconds.

Figures 2 and 3 display variation of secular equation, velocity and attenuation coeffi-
cient for Rayleigh wave with respect to phase velocity c with and without gravity and, magnetic 
field, respectively, in the context of three theories (L-S), (G-N III), and (3PHL). 

Generally, we conclude that all dependent variables (secular equation, velocity and 
attenuation coefficient) start from zero at c = 0 and tend to zero as phase velocity c tends to 
infinity. Also, it is obvious that there are clear changes between the three thermoelastic models. 
From fig. 2, we show that frequency equation and attenuation coefficient take greater value 
in presence of gravity comparing with the corresponding values if the gravity is neglected  
0 < c < 2, but, takes the inverse behavior for large values of phase velocity (i. e., c >2). It appear 
that the attenuation coefficient increase with absence of gravity nearly at 0 < c < 5, but, take 
inverse behavior with presence of gravity when c > 5. Physically, it clears that smaller values 
of phase velocity in presence of gravity act positively in secular equation and attenuation co-
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Figure 2. Rayleigh wave 
secular equation, velocity, and 
attenuation concern to phase 
velocity, c, in the presence 
and absence of gravity in the 
context of three theories

Figure 3. Rayleigh wave 
secular equation, velocity, and 
attenuation concern to phase 
velocity, c, in the presence and 
absence of magnetic field in the 
context of three theories
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efficient but negatively on the Rayleigh wave velocity. From fig. 3, it obvious that magnetic 
field affects positively in frequency equation but negatively on Rayleigh wave velocity and 

Figure 4. Stoneley wave 
secular equation, velocity, and 
attenuation concern to phase 
velocity, c, in the presence and 
absence of magnetic field in the 
context of three theories 

Figure 5. Stoneley wave 
secular equation, velocity, and 
attenuation concern to phase 
velocity, c, in the presence and 
absence of initial stress in the 
context of three theories 
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attenuation coefficients with the smallest values of phase velocity c and take inverse manner 
periodically with the increased values of c tend to zero with the greatest values. 

Figures 4 and 5 show variation of secular equation, velocity and attenuation coeffi-
cient for Stoneley wave with respect to phase velocity, c, respectively, under influence of mag-
netic field and initial stress in the context of three theories (L-S), (G-N III), and (3PHL). From 
fig. 4, it is shown, with the presence of magnetic field, it obvious that the secular equation and 
attenuation coefficient increase but Stoneley wave velocity decreases with the smallest values 
of c, but with the greatest values take inverse manner periodically in presence of H. From fig. 5, 
we concluded that presence of P makes increasing of attenuation coefficients of Stoneley wave 
with the smallest values of c, but secular equation and Stoneley wave velocity decrease with 
presence of initial stress.

Conclusions

With the presence and absence of magnetic field, gravity and initial stress, considering 
theories: Lord and Shulman, Green and Naghdi, and three phase lag, we concluded the follow-
ing remarks. 

yy Analytical solutions in the context of normal mode analysis for themoelastic problem in 
solids have been developed and utilized. 

yy The curves of the physical quantities with 3PHL theory in most of the figures are strongly 
appear comparing with L-S and GN III. in comparison with those under GN theory (type II).

yy All the functions calculated and shown graphically are continuous and the value of all phys-
ical quantities converge to zero at phase velocity (c = 0) and with an increasing of phase 
velocity converge to zero.

yy The presence of gravity, magnetic field and initial stress have a significant role in all the 
physical quantities. 

yy All external parameters have a significant role on the phenomena of surface waves and ap-
plicable in diverse field, especially, earthquakes, volcanoes, geophysics and geology.
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Nomenclature

a	 – parameter of two temperature	
Ce	 – specific heat per unit mass	
e	 – cubical dilatation	
eij	 – strain tensor	
E 
→

	 – electric intensity	
F
→

	 – vector of Lorentz’s body forces	
h
→

	 – vector of perturbed magnetic field	
H ¯′0	 – vector of primary magnetic field	
J

 →
	 – electric current density

K	 – thermal conductivity
P	 – initial stress
T	 – absolute temperature
T0	 – reference temperature of the medium,  

|(T – T0)/T0| < 1
ui	 – displacement vector

Greek symbols

αt	 – alinear thermal expansion
δij	 – kronecker delta function
ε0	 – electric permittivity
η 	 – hydrostatic initial stress parameter
θ 	  – thermodynamical temperature,  

(= T – T0)
λ, µ	 – counterparts of Lame’s parameters
µ0	 – magnetic permeability	
ρ	 – density of the medium
σij	 – stress tensor
τij	 – Maxwell stress tensor
τq, τT, τv, τv

* – relaxation times	
φ 	 – temperature of conductivity,  

(= φ0 – T)	
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