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In this paper we present a new method of wavelets, based on generalized Gegen-
bauer-Humberts polynomials, named generalized Gegenbauer-Humberts wave-
lets. The operational matrix of integration are derived. By using the proposed
method converted linear and non-linear fractional differential equation a system of
algebraic equations. In addition, discussed some examples to explain the efficiency
and accuracy of the presented method.
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Introduction

Many issues in the physics, engineering, and sciences such as fluid-dynamic traffic,
electrochemical processes, economics, electromagnetism, viscoelasticity, biosciences, control,
diffusion and neurology can be modelling mathematically by fractional differential equations
(FDE) [1]. Using the numerical methods usually solves most of the FDE to find the approx-
imate solutions. There are many techniques and approaches to solve the FDE like: fractional
difference method [2], differential transform method [3], Fourier transforms [4], Sumudu trans-
form [5], Adomian decomposition method [6], variational iteration method [7], Bernstein oper-
ational matrix method [8], fractional differential transform method [9] and homotopy analysis
method [10, 11].

One of the most coming techniques that is used in different sciences and engineering
is the orthogonal functions [12, 13]. Many sets of functions are frequently used such as the
sin-cos functions, block-pulse functions, Legendre, Laguerre and Chebyshev orthonormal. In
the field of sciences and engineering, the orthogonal functions have shown many successes to
solve the FDE such as wavelets method. Wavelet basis is transformed the underlying problem
to a system algebraic equations by evaluating the integrals using operational matrices [14,
15]. Haar wavelet was constructed by Haar in 1909 is the modest of the orthogonal wavelets,
Chen et al. [16] was the first who derived the operational matrix of Haar wavelet of frac-
tional integration and used to solve the differential equations. The Legendre and Chebyshev
wavelets gained more attractive from a lot of researchers too. The generalize of Legendre,
Chebyshev and other polynomials is Gegenbauer (ultraspherical) polynomials [17] which
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are orthogonal on the interval [-1, 1]. To obtain the operational matrix for the Gegenbauer
wavelet method, Rehman and Saeed [18] did the main role to investigate it. Also, Srivastava
et al. [19] applied the Gegenbauer wavelet to find the solution of the fractional Bagley-Torvik
equation.

Due to the amount of applications in different physical problems and sciences, it
brings more attention find the optimal solutions of FDE. Therefore, this paper develops a new
algorithm of wavelets by assembling some of wavelets methods in one formula. A generalize
Gegenbauer wavelet method is considered to find the solution of fractional differential prob-
lems called the generalized Gegenbauer-Humberts wavelet (GHW). Operational matrix are de-
rived and utilized for solving linear and non-linear FDE. The proposed method depends on the
generalized Gegenbauer-Humberts polynomials to find the FDE solutions, and the provided
results proven that the new scheme is effective to find the solutions of FDE.

Materials and methods

The first definition of fractional derivatives by the Riemann-Liouville, the Grun-
wald-Letnikov, the Hadamard, the Erde’lyi-Kober, and so on. The solution for a lot of physical
problems in the life being easier when using the Caputo formula. Therefore, the Liouville-Ca-
puto got more attention for initial value problems whatever the initial conditions are given,
which is the most cases of physical processes.

Definitions of fractional derivative and integral

We review basic definitions of fractional differentiation and fractional integration [20]:
Definition 1. The Riemann-Liouville fractional integration operator of order o > 0 of
a function u(?) is defined:

L [ et
([“u)(t)z m}[(l—r) u(z)dr, a>0 O

u(t), a=0

Definition 2. The Caputo fractional derivative operator of order o > 0 of a function
u(?) is defined:

d”u_(t) a=neN
ar"
(Do) =1 v @)
[I"_a(—j u](t), n-l<a<n
dt

where n = [a] and ¢ > 0. This is useful relation between the Riemann-Liouville and Caputo
operators, which is given:

n—1

(IaD,au)(t) = u(t)—Zu(k)(W)tk—k!

k=0

where n = [a] and ¢ > 0. The (D“I“)u(f) = u(t), D* = 0, where f is a constant.
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Generalized Gegenbauer-Humberts polynomials and
the generalized Gegenbauer-Humberts wavelets

The generalized Gegenbauer-Humberts polynomials P, *“(x), m > 0, which are de-
fined by the generation function [21]:

(D(t)=(c—2xt+yt2) g =an:1,y,c (x)" 3)
m=0
where 4 = 0, y, and ¢ # 0 are real number. As a special cases of eq. (3) we consider P,;}<(x) as:
2" kind of Chebyshev polynomial P,"'(x) = U,(x), Legendre polynomial P,/*"'(x) = w,(x) ,
Morgan-Voyc polynomial P,""'(x/2 + 1) = B,(x), 1* kind of Fermat polynomial P,”'(x/2) =
¢m+1(x), Dickson polynomial when a > 0 as P,;***(x) = D,(x, a) where a is a real parameter and
Gegenbauer polynomial if y =c = 1.
The class of the generalized Gegenbauer-Humberts polynomial sequences satisfy the
following recurrence relation [21]:

2A+m=2
y==

P (x)= ZxMPl’y’c (x)-
c

" > phye (x), Vm 22 4)

m-2

m m

with initial conditions:
B (x)=®(0)= O (x)=@'(0)= 2Axc !

The generalized Gegenbauer-Humberts polynomial sequence in eq. (4) is an orthogonal poly-
nomial if yc > 0 [21]:

hy = [[B22€ (0)] dua(x), wm =1

N

:(Zj’" (A+m-D" QA+m-1)"
c m! (A +m)”

where £, is the normalization factor defined:

" 22T (204 m)0(A+1)
o]

c 2 1 (5)

m\(A+m)|T(A)| T| 1+—=

(emr(a) {2+ ]
where the falling fractional rotation x” , some times also denoted (x), is defined:
Xt = x(x—1)=, (r= 1) x2=1
The family of discrete wavelets defined:
Vi (x) =2 (s,
In particular, when r, =2, s, = 1 the w(x) forms an orthogonal basis:
) Lz"/zp,j’yﬁ(z"x—znﬂ), #_xﬁz—:

Vi () =4 2 2 (6)

0, ow.
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where k=1, 2...is the level of resolution, n = 1, 2....,2*is the translation parameter, m =0, 1,..,
M — 1 is the order of the generalized Gegenbauer-Humberts polynomial, M > 0, yc > 0. Corre-
sponding to each 4, y, and ¢, we have a different family of wavelets.

Function approximations and the generalized
Gegenbauer-Humberts wavelets matrix

We can expand any function f{x) € L,[0,1] into truncated generalized GHW series:
2H p-1

S (@)= 2D e wim (x)=CT v (x)
n=1 m=0
where C and W*“(x) are 2*'M x 1 matrices given:
C - |:Clo’cl1’"’7clM*l’020’czl""’czM*I’""Czk’lo’cz"’ll""f’czk’lM_l ]T
P (x) = [(//lyo’C ()01 (%)t (%) 36 (%) 937 (%) 3i 2 (%) oees
T
W0 ()W ()5, (3)]

The collection points of the generalized GHW are taken as x;= (2i — 1)/(2*M), where i
=1,2,..., 25'M. The GHW matrix is given:

. 1 3 26Mm -1
‘Pg’zflszHM - ‘P%C( k j,‘l’y’c( k J’...,\yy,c k (7
2*M 2k M 2km

In particular, we fix k=2, M =3, we have n = 1,2 and m = 0, 1, 2, for fix value of
y=3,c=1,and A =12 the GHW matrix is given:

[1.074567  1.074567 1.074567 O. 0. 0.
—2.108965 0. 2.108965 0. 0. 0.

g3 _|2293272 -804134 2293272 O, 0. 0.

66 1. 0. 0. 1.074567  1.074567 1.074567
0. 0. 0. ~2.108965 0. 2.108965
0. 0. 0. 2293272 -.804134 2293272 |

Similarly, we get different Gegenbauer wavelet matrices for different value of y, ¢,
and /.
The GHW operational matrix of fractional order integration

We write f{x) = CT W»<(x), an arbitrary function /'€ L,[0,1] can be expanded into a
block-pulse functions:

m—1
F(x)= D 1t (x) = f"B(x), m=2""Mm
i=0

where f; is the coefficients of the block -pulse function. The generalized GHW can be expanded
into m-set of block-pulse functions:

e (x) =0 B (x) (8)
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The fractional integral of the block-pulse function vector can be written as: (/“B)(x) =
Frwm B(x) where F';,., is the block-pulse matrix of integration given [14]:

1 S & fm—l_

. 01 & - &G
Fopy=————10 0 1 - &,_ 9
m* T(a+2)|. .. . . fm ’ ©)

[0 - e 1
&=+ =20+ (- with By =W FOO (¥ (10)

where P, 1s the GHW operational matrix of integration of fractional order a. In particular,
for k=2, M =3, for fix valueof y=3,c=1,1 =35, and o = 0.5 the GHW matrix is given:
[0.53680 0.15761 —0.31336 0.43691 —0.7547 0.26957 |
-0.21066 0.22434 0.16149 0.85907 —0.44957 0.24122
PALOS _ 0.40907 —0.37608 0.16046 0.75705 —0.20247 0.10034

6 . 0. 0. 0.53680  0.15761  —0.31336
0. 0. 0. —-0.21066 0.22434  0.16149
| 0. 0. 0. 0.40907  —-0.37608 0.16046 |
Convergence of the GHW
Theorem. The series
2 M1
2D ()
n=1 m=0

converges to f{x), when 2¥! — oo,

Proof. To prove this Theorem, we will use the fact that is every Cauchy sequence is
convergent. Since the wavelet basis represent a family of orthonormal functions in the space
Ly(R), take the inner product of f{x) and 5, where c¢,, = (f(x), w5 (x)) We assume that
[=2+1,1=2" and d =M, and d = N, where k, a the resolutions level, and M, N the order of the
generahzed Gegenbauer-Humberts polynomials.

Let B;; represent a sequence of part1al sums of ¢,y (x), we need to prove that B;;
is a Cauchy sequence converges to f{x) when /, d — co. Firstly, we prove that B;; is a Cauchy
sequence, suppose that B,; be an arbitrary sums of ¢y (x) with [>1,d>d:

i 2 [ d-1 I d-1
I1B; 3~ Bya IP= ZZc,,w,,_;"(x) = DD el @, Y Y el ()

i=l+1 j=d i=l+1 j=d s=l+1r=d
S o (11)
i d-1 1 d-1 i d-1 s
=Y D> Y e (Wi @wir )= > e |
i=l+1 j=d s=I+l r=d i=l+1 j=d

As [, d — oo, by the definition of the Bessel’s inequality, we have Y1y ol eyl 1s con-
vergent. This implies B;; is a Cauchy sequence converes to say y(x) € L,[0,1) Now, to show that

y(x) = fx):
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()= s ()t (0)) = (r (=) v ()= {1 () ()

= lim <Bi,a’5”f}c (x)>—cij =c;—¢; =0

l,d—w

(12)

This impliesy’ >4 ¢,y (x) converges to f{x) as [, d — .

Description of the proposed method

In this section, we use the GHW operational matrix to solve non-linear Riccati frac-
tional equation of the form:

Du(t)=N(t)u> +Q(t)u+R(t), t>0, 0<a <l (13)

with the initial condition u(0) = 4. We suppose that the functions D*u(f), N(f), O(t), and R(f) are
approximated using GHW:

D u(t)=U"¥"(¢) (14)
u(t)=UT PPOs W2 (1) + Uy P2 ()= CT " (1) (15)
N()=vTw>< (1), O(t)=w"¥>“(¢), R(t)=X"¥"(r) (16)

Substituting eqgs. (14)-(16) in eq. (13):
UT e () = v (n)] €7 \P«V’C(t)]z T W () CT W (1) + XT W< (1) (17)
Substituting eq. (9) into eq. (17):

2
chws, () =v" [T, ()] +w" T, (1) + X7 (18)
where C, V, W, and ¥, (f) are known, eq. (18) represents a system of a non-linear equations
with unknown vector U. This system of non-linear equations can be solved approximately.

Algorithm: input: M € N, k € N U{0}, u € N/{1}, 0 <o <1, and the functions N(7),
O(%), R(?), and h.

Step 1: Define the basis function v, by eq. (6) and the vector ¥ " using:

r
N [x{;f/(,)c (t)’...,\lllyijl (t) R 2% (t)""a\ll;’/l(il—l (1)|...|\Piflfo (t)’...,\yi,chil]

Step 2: Compute the GHW matrix ., and by eq. (8).

Step 3: Compute the GHW operational matrix P*<“and P”<* using eq. (10).

Step 4: Define the unknown matrix U = [u;],., where m = u*M.

Step 5: Compute the vectors V, W, C, X in egs. (15) and (16).

Step 6: Solve the non-linear system in eq. (18) for the unknown vector U.

Output: The approximate solution: u(f) = CT ¥ "““(¢).
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Numerical simulations

In this section, we implement the GHW method to solve several examples of linear
and non-linear fractional differential equation.
Example 1. Consider the equation:

r()

D“y(t)+y(t) = F(3—a)

The exact solution is given by y(¢) = £. Now, we implement the GHW method:

2+a

4, 0<a <l (19)

_ 42 2+a F(3) _J=
y(1)=t"+1 —r(a+3) 1%y(1) (20)
Let:
y(r)=CTwr (1) (1)
then
I7y(t)=CTI1"W (1) = CTBYSe W (1) (22)

Substituting eqgs. (21) and (22) into eq. (20), we get the following system of algebraic
equations:
(3
CT»e (t)=1> +17*7 _re) CTRySa W (1)
r (a + 3)
Solving the aforementioned system of linear equations forthe unknown vector C.
When applying the presented method for « = 0.8, 1 =9,y =3, c=1with k=2, M =3, and

k=2, M =5 we obtain the approximate solutions as in the tab. 1. For a = 0.8, fig. 1(a) shown
the results.

Table 1. Exact and approximate solution for different values of k, 4, M in Example 1

G| mer | A ey | Al
k=2,M=3 k=2,M=5
0 0 -0.20-10* | 0.25335-10* | 0.13745-10* | 0.85887 - 10~
0.1 0.01 0.9403 - 1072 | 0.59943 - 107 | 0.97656 - 102 | 0.23730 - 107
0.2 0.04 0.38921 - 10" | 0.10793 - 102 | 0.39597 - 10" | 0.40507 - 103
0.3 0.09 0.88533 - 107" | 0.14648 - 10* | 0.89465 - 10" | 0.53493 - 107
0.4 0.16 0.15824 0.17561 - 1072 0.15934 0.64695 - 1073
0.5 0.25 0.24799 0.20097 - 102 0.24929 0.74516 - 103
0.6 0.36 0.35778 0.22201 - 102 0.35920 0.83500 - 1073
0.7 0.49 0.48758 0.24133 - 1072 0.48909 0.91970 - 1073
0.8 0.64 0.63740 0.25892 - 102 0.63899 0.10010 - 102
0.9 0.81 0.80724 0.27479 - 107 0.80890 0.10801 - 10
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(a) (b)

Figure 1. Exact and approximate solution when (a) Example 1: 0 =1,2=9, K=2,and M =5,
(b) Example 2: a=1,2=11, K=2,and M =5

Example 2. Our example covers the inhomogeneous linear equation:

2 1
D%y(t) = 1% My ()2 -1, 0<a<1,1<0
»(1) r(G-a) r(2-a) »(1) (23)
with initial condition y(0) = 0.
We applied the GHW approach to solve eq. (23) for a different values of a. Using
section Description of the proposed method, we convert eq. (23) to the system:

@) r()
Ty ys¢ _ 42 2+a _ (1+a) _ T pyca
C'Y"(r)=t"+1 F(as3) t F(ar2) C By (1)

Solving the last system, we approach to the exact solution that is y(f) = > — ¢, see
fig. 1(b). Table 2 shows the absolute errors of a different values of o when k=2, M =5,y =3,
c=1,and A= 11.

Table 2. The absolute error of the approximate solution in Example 2 for a different values of a

’ Exact Absolute error Absolute error Absolute error
solution =03 a=0.7 a=0.1

0 0. 0.55395 - 102 0.32650 - 102 0.12536 - 102
0.1 0.01 0.10153 - 10 0.12743 - 102 0.97553 - 107
0.2 0.04 0.21675-10* 0.53432-10° 0.72389 - 103
0.3 0.09 0.12233-10° 0.19669 - 103 0.49622 - 1073
0.4 0.16 0.36957 - 103 0.79304 - 10 0.29023 - 1073
0.5 0.25 0.40140 - 103 0.24908 - 1073 0.10385 - 107
0.6 0.36 0.47173 - 103 0.39335- 1073 0.64764 - 10+
0.7 0.49 0.52497 - 103 0.51013 - 103 0.21733 - 103
0.8 0.64 0.56633 - 103 0.60549 - 1073 0.35536 - 107
0.9 0.81 0.59949 - 103 0.68272 - 1073 0.48025 - 1073

Example 3. Consider the following fractional order Riccati differential equation:
D¥y(t)=1-y*(t), 0<a <1 (24)

with initial condition y(0) = 0. Exact solution for & = 1 was found to be:
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2
e” -1
y\)=
(1) e’ +1
The integral representation of eq. (24) and the initial condition are given:
tO(
)=y(0)+ ——=-1I° 2 t 2
2 (1) =2 O+ gy =1 0) (25)
let
y(t)=CTe (1) (26)
then
19y()=CT 19w (£) = CTRY5e w7 (1) 27)

By substituting eqs. (26) and (27) into eq. (25), we get the following system of alge-
braic equations:

t* 2 2
cTyye (4 :——[r r NS J
() F(a+1) ! 2 2w
where
2 2 2 T ,C, ,C
[’"1 o rz’HM}:C B 5 ot (0)

Solving the non-linear system for an unknown vector C using the New-
ton iteration method. By applying the presented method for o = 1, A =7, y = 3, ¢ = 1 with
k=2, M=3,and k=4, M =10, we obtain the approximate solutions with the absolute error of
a different values of a as in the tab. 3. For o = 1, fig. 2(a) shown the results.

Table 3. Exact and approximate solution for a different values of &, M, and « in Example 3

GHW Absolute G Absolute Absolute Absolute
Exact method method
t . error error error error
solution k=2 a=1 k=4 w=05 =07 a=1
M=3 M=10 : :

0 0 —0.158918-1072| 0.15898-102 | =0.9100-107 [0.376174122-10""| 0.71337195-102 | 0.91000-10~°
0.1 |0.9968-10" 0.100090 0.422740-103/0.999748 - 10! |  0.2474934483 0.1188956408 | 0.30681-1073
0.2 | 0.197375 0.199739 0.236404-102 0.199599 0.2710640905 0.1523423472 | 0.22245-102
03| 0.291312 0.297356 0.604409-102 0.297984 0.2513949822 0.1613220518 | 0.66715-107
0.4 | 0.379948 0.392942 0.129938-10"! 0.393678 0.2104880241 0.1540577586 | 0.13729-10"!
0.5 0.462117 0.480994 0.188776-10" 0.484752 0.1604248546 0.1347100156 | 0.22635-10""
0.6 | 0.537049 0.568240 0.311910-10" 0.568943 0.996134238-10"| 0.1055419192 |0.31893-10"
0.7 | 0.604367 0.643129 0.387615-10" 0.643852  10.500931258-107!| 0.709009684 - 10| 0.39484-10"
0.8 | 0.664036 0.705660 0.416241-10"! 0.707212  {0.101737943-10""| 0.138421720-10"'| 0.43177-10"!
09| 0.716297 0.755835 0.395376-10"! 0.757152 0.1347159371 0.443972316-107'| 0.40846- 10"
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Figure 2. Exact and approximate solution when (a) Example 3: o =1, =", K=4, and M =10,
(b) Example 4: a=1,A=17,y=2,c=1,K=4,and M =5

Table 4. Exact and approximate solution for the different values of k and M in Example 4

GHW
" Exa_ct Gelt{th Absolute method Absolute
solution ) error k=4 error
M=5 M=5
0 0 0.222006 - 102 | 0.22200 - 102 | 0.156191 - 103 | 0.156192 - 103
0.1 0.110295 0.114168 0.38735 - 102 0.110886 0.591400 - 103
0.2 0.241976 0.249936 0.79599 - 102 0.245629 0.365301 - 102
0.3 0.395104 0.413538 0.18433 - 10! 0.407985 0.128802 - 10!
0.4 0.567812 0.606961 0.39149 - 10! 0.600243 0.324313 - 10!
0.5 0.756014 0.830446 0.74431 - 107! 0.822016 0.660017 - 10!
0.6 0.953566 1.076700 0.123134 1.068512 0.114946
0.7 1.152948 1.336847 0.183898 1.328861 0.175912
0.8 1.346363 1.591813 0.245450 1.585271 0.238907
0.9 1.526911 1.818491 0.291579 1.814090 0.287179
Table 5. The absolute error of the approximate solution
in Example 4 for the different values of y and ¢
Absolute Absolute Absolute Absolute
" error error error error
y=1 y=2 y=2 y=2
c=1 c=1 c=2 c=3
0 0.1561919 - 103 | 0.1561919 - 1073 | 0.1561919 - 10 | 0.1561919 - 107
0.1 0.5914011 - 10 | 0.5914011 - 103 | 0.5914011 - 103 | 0.5914011 - 103
0.2 0.3653015 - 102 | 0.3653015- 102 | 0.3653015- 102 | 0.3653015 - 1072
0.3 0.1288026 - 10! | 0.1288026 - 10" | 0.1288026 - 107" | 0.1288026 - 10!
0.4 0.3243133 - 107" | 0.3243133 - 10" | 0.3243133 - 10" | 0.3243133 - 10"
0.5 0.6600171 - 10" | 0.6600171 - 10" | 0.6600171 - 10" | 0.6600171 - 107!
0.6 0.1149466 0.1149466 0.1149466 0.1149466
0.7 0.1759123 0.1759123 0.1759123 0.1759123
0.8 0.2389076 0.2389076 0.2389076 0.2389076
0.9 0.2871790 0.2871790 0.2871790 0.2871790
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From the results in these tables, it is clear that the approximate solutions converge to
the exact solution when we increase the values of k and M, also when we approach a to 1.
Example 4. Consider another fractional Riccati differential equation:

D¥y(t)=1+2y(t)-y*(¢), O<a<l (28)

with initial condition y(0) = 0. Exact solution for a = 1 was found to be:

()—1+x/_tanh[x/_+—lo [ﬁjﬂ

By appling the same procedure of Example 3, we get the following system:

C ta C, ,C
CT\P% (l)=r(a+1)+2CT ri}xma\Py () [;,12 1”22 7"22/(—1M:|
where
(77 ey | =T RS ey (0

We can find the unknown vector C, by solving the aforementioned system of a non-lin-
ear equations. By applying the presented method fora=1,1=17,y =3, and ¢ =1 with k=2,
M=5,and k=4, M =5, we obtain the approximate solutions as in the tab. 4. While in tab. 5
we obtained the absolute error of a different values of y and ¢ and these results obtained with
k=4, M=5,and 1 =17, we can see the change of values of y and c there is no a big different of
error. Figure 1 shown the results when a=1,1=17,y=2,c=1,k=4,and M =5.

Conclusion

In the present article, we proposed an algorithm based on generalized GHW to solve
linear and non-linear problems with fractional order. The main impulse of this work is to sum-
marize some wavelet methods by a one method. The operational matrix of fractional integration
obtained for GHW, then applied it to convert the given problem to a system of algebraic equa-
tions can easy to solve it. We compared the outcomes of the proposed method with the existing
results for a different values of y, ¢, and 1. The results showed that how effectively of the new
algorithm to tackle the problems of fractional order.
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