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This paper discusses a photo-thermal rotational semiconductor medium with ini-
tial stress, and voids by considering two thermoelastic theories: Lord-Shulman 
and Dual-Phase-Lag models. The equations of motion, temperature, voids, and 
photothermal have been investigated under two generalized thermoelastic theory. 
The technique of normal mode has been applied to solve the differential equa-
tions system with appropriate boundary conditions. Quantities of physical interest 
such as displacement, stress components, concentration, temperature, and carrier 
density are calculated and displayed graphically to demonstrate the effect of the 
external parameters. The obtained results, by using the two theories, show that the 
dual-phase-lag theory gives an origin results comparing with obtained results by 
Lord-Shulman theory. By neglecting the initial stress and voids, and considering 
the only dual-phase-lag theory, then the results obtained in this paper are deduced 
to the results of Abbas et al. [1].
Key words: photothermal waves, Lord-Shulman, dual-phase-lag, voids,  

initial stress, normal mode analysis technique, semiconductor 

Introduction

In recent years, there has been a growing interest in voids and photo-thermal, with 
applications in many areas including acoustics, physics, optics, engineering, and technology. 
Many researchers are interested to explore the effect of the voids in the presence of thermoelas-
ticity [2, 3, e. g]. Biot [4, e. g.] explores the solution of the paradox of the infinite speeds due to 
the signals thermal on the motion of the waves. Lord and Shulman [5] introduce a new model 
to generalized thermoelasticity theory by considering one relaxation time that can modify a 
new law of heat conduction which contains the heat flux vector and its time derivative. The 
equation of heat for this theory ensures finite speeds of propagation for heat and elastic waves 
with signal thermal. Hetnarski and Ignaczak [6] explore the effect of the relaxation times in 
generalized thermoelasticity and effect these times to find the velocity of the wave. Bachher  
et al. [7] introduce a generalization for a thermoelastic infinite medium in the presence of in-
stantaneous heat sources with voids by considering fractional derivative heat transfer. In elastic 
materials, Cowin and Nunziato [8] extend the voids linear theory problem. Dhaliwal and Singh 
[9] investigate dynamic coupled thermoelasticity to the stress-strain constitutive relations and 
equation of motion. Eringen and Suhubi [10] discuss the fundamental equations of the basic 
field, constitutive equations simple micro-elastic which are affected by micro deformations and 
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rotations not encountered for finite elasticity and boundary conditions. Othman et al. [11] dis-
cuss photothermal wave propagation in a semiconducting medium with one relaxation time. 
Song et al. [12] investigate the reflection of the photo thermal waves in a semiconducting 
medium in the context of a generalised thermoelastic theory. Todorović et al. [13] explore the 
transmission of the technique of photoacoustic frequency, electronic deformation mechanism 
effect in semiconductors. Lotfy and Gabr [14] extend the study of semiconducting infinite re-
sponse under photothermal excitation due to laser pulses and two temperature theories. Todor-
ović [15] analyses the system of elastic wave equations, partially coupled plasma and thermal 
field. Abbas et al. [1] illustrate the dual-phase lag model of a photothermal interaction in a 
semiconductor material.

Formulation of problem

 For the purposes of discussion consider a semiconductor, homogeneous, isotropic 
medium in the present of initial stress and rotation. Here, we assume that the systems could 
have voids and photo-thermal. We consider the case of 2-D, with the aim of determining the 
effects of external parameters on physical phenomena. The basic governing equations are listed 
[16]:

 –  equation of motion

 (, [ ( ) 2 )ji j i i iu u uσ ρ= + Ω×Ω× + ×Ω× 

that tends to: 

(2 [ ( ) 2 )
2 2i e v vi i i i
p pu T N b u u uµ λ µ γ δ φ ρ   − ∇ + + + ∇ − ∇ − + = + Ω×Ω× + ×Ω×     

   
 (1)

 –  heat conduction equation: 
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 – governing equations in the presence of volume fraction, thermoelastic waves, and plasma 
are given:  
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 – volume fraction field equation

,v ji v ij v v v vb u phi mTαφ ζφ ω ρχφ− − − + =  (4)
 – constitutive relations are given

2ij ij n v v ij ije T N b P Pσ µε λ γ δ Φ δ ω= + − − + − −   (5)

where 

 
( ) ( ), , , , ,
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2 2ij i j j i ij j i i j i ju u u u e u i jε ω= + = − = =

Here, let u(x, y, t) be the displacement (elastic waves), and T(x, y, t) be the temperature 
(thermal waves). Let N(x, y, t) be the carrier density (plasma waves) and Φ(x, y, t) be the volume 
fraction. For the 2-D problem, the photo-thermal voids transport process can be found by con-
sidering the thermal activation of coupling parameter K, then the displacement takes the form: 

( ) ( ) ( )1 2 1 2, ,0 ,    where    , , ,    , ,u u u u u x y t u v x y t= = = (6)
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For simplicity in simulation, we prefer to deal with a non-dimensional system, in 
which the governing equations and all physical quantities such as the displacement, tempera-
ture, and density are non-dimensionalised by chosen representative values. It is convenient to 
non-dimensionalise all the aforementioned equations by using the following non-dimensional 
variables:

( ) ( ) ( ) ( ) ( )
' '
0 0* *

2 * *
2

1 1 1', ', ', ' , , , , ', , , , , , 
2

1 2, , , , ,
2 2
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(7)

The displacement must be written as addition of scalar and vector potential functions 
Φ(x, y, t) and Ψ(x, y, t) related by the following form Lame’s potential method: 

,    x y y xu vΦ Ψ Φ Ψ= + = − (8)

Substituting eqs. (6)-(8) into eqs. (1)-(5) we obtain new equations: 
 –  the equation of motion becomes
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 – heat conduction equation becomes 
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(10)

 – governing equations in the presence of volume fraction, thermoelastic waves, and plasma 
becomes 
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 – volume fraction field equation becomes
2
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 – constitutive relations become: 

( )2 2 2 2 22 ˆ, ,xx x y vN Pu T bσ ββ ν β β β φ= + − − − + − (13)

( )2 2 2 2 22 ˆ
yy x y vu v T N b Pσ β β β β β φ= − + − − + − (14)

( )2 2 2 2 22 ˆ
zz vT N b Pσ β β φΦ β β= − ∇ − − + − (15)
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where 
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Normal mode analysis

This section applies the normal mode analysis technique so that the physical quanti-
ties take the form: 
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By using this eq. (17), eqs. (9)-(12) can be written: 
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where 
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To solve the system of eq. (18), we must eliminate Φ*(x), T *(x), N *(x), and ϕ*
v(x) be-

tween them, to obtain the tenth-order ODE in the form: 
10 8 6 4 2 0s s s s sD A D B D C D E D L− + − + − = (19)

where As, Bs, Cs, Es, and Ls are given in Appendix. By factoring out this eq. (19), we obtain the 
problem: 
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where kj
2 = 1, 2, 3, 4, 5 are the characteristic equation roots of this eq. (20). By considering the 

bounded as x goes to infinity, we obtain the solution of eq. (20) in the form:
4 5 5

* * *
1 2

1 1 1
5 5

*
3 4

1 1

e , e , e

e , e

n n n

n n

k x k x k x
n n n n n

n n n

k x k x
n n v n n

n n

M H M T H M

H M H MN

Φ

φ

− − −

= = =

− ∗ −

= =

=

=

= Ψ =

=

∑ ∑ ∑

∑ ∑



Alotaibi, H.: Solution of Lord-Shulmans and Dual-Phase-Lag Theories ... 
THERMAL SCIENCE: Year 2020, Vol. 24, Suppl. 1, pp. S59-S68 S63

The components of displacement take the form: 
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Boundary conditions

 This section considers the appropriate boundary conditions at the boundary x = 0 to 
determine the coefficients Mn for (n = 1, 2, 3). The appropriate boundary conditions are consid-
ered as following: 

 –  The normal stress condition is: σxx = –P – p*
1eωt+iby, where p*

1 is an arbitrary constants. 
 –  The tangential stresses vanishing: σxx = 0.
 –  The thermal boundary condition is: ∂ϕv/∂x = 0.
 –  The condition of change of the volume fraction field is: ∂ϕv/∂x = 0.
 –  The condition of change of carrier density field is: DE∂N/∂x = sN, where s is an arbitrary 

constant. 
By substituting the considered quantities in the previous boundary conditions, we ob-

tain a system of five equations. By applying the inverse of matrix method, we obtain the values 
of the constants Mn for (n = 1, 2, 3). 
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Numerical results and discussion

This section presents numerical calculations for the physical quantities to demonstrate 
the effect of the external parameters on the phenomenon, as shown in figs. 1-7. The numerical 
calculation were carried out for silicon. Table 1 lists the physical constants in our calculation, 
and tab. 2 lists the voids parameters. 

Table 1. The values of the physical constants used in our calculations [17]

Physical constance Value Physical constance Value

 λ 3.64 µ 5.46 ⋅ 1010 kg/ms

 ρ 2.33 ⋅ 103 kg/m3 K 150 W/mk

b 1.8 s 2 m/s

P*
1 1 dn –9 ⋅ 10–31 m3

De 2.5 ⋅ 10–3 m2/s Eg 1.12 eV

y 0.5 i 1−

t 0.002 αt 3 ⋅ 10–6 1/k

T0 300 K ξ 1.2

ω ω0 + iξ ce 695

τ 5 ⋅ 10–5 τ0 5 ⋅ 10–5

Ω 0.3 x [0, 2.5]

Table 2. The values of the voids parameters used in our calculations

Voids parameters Value Voids parameters Value

bv 1.13849 ⋅ 1010 ζ 1.475 ⋅ 1010

ωr 0.078 ⋅ 10–3 For LS: τ0 0.3

χ 1.756 ⋅ 10–15 For LS: τΘ 0

α 3.688 ⋅ 10–5 For DPL: τ0 0.9

m 2 For DPL: τΘ 0.7

Figure 1 displays the variation of axial 
co-ordinate on the horizontal displacement u 
concern to x under the effects of initial stress and 
two thermoelastic theories (LS and DPL). By 
considering two models, the values of the dis-
placement u become bigger than the correspond-
ing values for DPL model. It is noticed that the 
the horizontal displacement u decreases with an 
increase in the initial stress, which indicates to 
the opposite behaviour for u with the positive 
behavior of the initial stress.
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LS, = 0.3P
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Figure 1. Plot the longitudinal displacement u 
against the axial x under initial stress for LS 
and DPL model
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By increasing values of the axial co-ordi-
nate x, the horizontal displacement u decreases 
to zero with time as x approaches infinity. Figure 
2 displays the vertical displacement v with re-
spect to axial co-ordinate x under the influence 
of the initial stress for LS and DPL models. It is 
clear that the values of the normal displacement 
v approach zero as x tends to infinity. Increasing 
values of initial stress results an increment in 
normal displacement v for the LS model in con-
trast with that values obtained by DPL model. 

The concentration ϕv with respect to axial 
x under initial stress for LS and DPL models has 
been displayed in fig. 3. By increasing the the values of the initial stress, the values of ϕv are 
also increasing with the LS model. Moreover, the value of the concentration ϕv, in both models, 
tends to zero as the value of x increases.

The variation of stress σxx with respect to axial x under the influence of the ini-
tial stress for LS and DPL models is presented in fig. 4. It is important to emphasise that  
σxx = –P – p*

1eωt+iby at x = 0 satisfies the boundary conditions and also has different values with 
the variation of P and p1. Also, it is clear that σxx tends to zero as x approaches to infinity. A 
comparison of results obtained from LS and DPL models shows that the values of stress σxx 
increases with DPL model. Also, the normal stress σxx tends to zero with large values of x. 
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Figure 3. Plot the concentration ϕv  
against the axial x under initial stress  
for LS and DPL models 

Figure 4. Plot the normal stress σxx  
against the axial x under initial stress  
for LS and DPL models

Figure 5 displays the variations of the shear stress σxy with respect to axial x in the 
presence of the initial stress for LS and DPL models. It is shown that the share stress σxy starts 
from zero at x = 0 and satisfies the boundary condition at the origin σxy = 0. The values of the 
shear stress increase until x = 0.5 and then start to decrease to a value reasonably close to zero 
as x approaches infinity. Also, it is obvious that the rise in initial stress results in small value of 
the shear stress, concerns the LS and DPL models. The shear stress has a large values with LS 
model in contrast with that values obtained by DPL model.

Figure 6 describes the influence of initial stress on the temperature, T, with respect to 
axial x, for LS and DPL models. It is clear that the temperature, T, satisfies the boundary con-
ditions at x = 0. Also, it is obvious that the temperature, T, tends to decrease down to zero as x 
approaches infinity, when initial stress P = 0 in LS model, but increases for remain values for 

Figure 2. Plot the normal displacement v 
against the axial x under initial stress for LS 
and DPL models
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initial stress P for LS, while for DPL model, the temperature, T, tends to zero as x approaches 
infinity. Moreover, the temperature, T, decreases with an increase value in the initial stress P. 
But it is important to emphasise that reverse behaviour has been observed in fig. 7 for the carrier 
density N variation with concern to axial x under the initial stress for LS and DPL models. This 
demonstrates the influence of temperature, T, on carrier density N and vice versa.
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 Figure 5. Plot the variations of shear stress σxy 

against the axial x under initial stress for LS 
and DPL models

Figure 6. Plot the temperature T against the 
axial x under initial stress for LS and DPL 
models

This section shows that all physical quan-
tities approach zero as x approaches infinity. This 
result demonstrates that reasonable agreement 
exists with the exponential function behaviour 
of the solution of the quantities, and the reduc-
tion of the physical quantities approach the ori-
gin point. Moreover, when we neglect the initial 
stress and voids and considering only dpl theory, 
the results obtained in the current paper deduce 
to the results of Abbas et al. [1].

Conclusions

This paper explores a semiconductor, ho-
mogeneous, isotropic medium in the present of 

initial stress and rotation in 2-D. By using normal mode analysis technique, the systems of 
differential equations with appropriate boundary conditions are addressed. The influence of of 
the external parameters on some quantities of interest such as displacement, stress components, 
concentration, temperature, and carrier density are deliberated and bestowed through graphs, 
figs. 1-7. The effect of the relaxation time, temperature, volume friction has potential effect on 
the wave propagation which used in different applications, especially, in geomechanics, tech-
nology, engineering, and biology. The findings of this work are summarized. 

 y  As x approaches infinity, all physical quantities of practical interest tend to zero. 
 y  The variation of y-axis makes periodically change in the physical distributions. 
 y  The relaxation times due to LS and DPL models, void, photo-thermal, initial stress and time 

parameter t have a strong effect on the phenomenon. 
 y  The DPL model has a strong influence on the physical quantities comparing with the agree-

ment values of LS model. 

Figure 7. Plot the carrier density N against 
the axial x under initial stress for LS and 
DPL models
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Appendix
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