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The generalized equal width model is an important non-linear dispersive wave 
model which is naturally used to describe physical situations in a water channel. 
In this work, we implement the idea of the interpolation by radial basis function 
to obtain numerical solution of the non-linear time fractional generalized equal 
width model defined by Caputo sense. In this technique, firstly, a time discretiza-
tion is accomplished via the finite difference approach and the non-linear term 
is linearized by a linearization method. Afterwards, with the help of the radial 
basis function approximation method is used to discretize the spatial derivative 
terms.The stability of the method is theoretically discussed using the von Neumann 
(Fourier series) method. Numerical results and comparisons are presented which 
illustrate the validity and accuracy of our proposed concepts.
 Key words: non-linear time fractional generalized equal width model, stability, 

radial basis function-finite difference, Caputo fractional derivative,  

Introduction 

The non-linear time fractional generalized equal width model (TFGEWM) is an im-
portant non-linear dispersive wave model which is naturally used to describe physical situations 
in a water channel. The current paper deals with the approximated solution for the non-linear 
TFGEWM order α (0 < α ≤ 1):
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where µ and ε are positive constants and f(x, t) is a source term. The symbol ∂αu(x, t)/∂tα is the 
Caputo fractional derivative [1] which could be written: 

( )
( )

( )
( )

( )

0

,1 1 d , 0 1
1

,

,
, 1

t u x

t
u x t

t
u x t

t

α
α

α

ζ
ζ α

α ζ ζ

α

 ∂
 < <
Γ − ∂ −


= 

∂  ∂ = ∂


∂
∫

When α → 1, eq. (1) converts to the GEWM, where p is a positive integer, ε and µ 
are positive parameters that need the boundary conditions u → 0 as x → ±∞. The GEWM was 
introduced as an alternative to generalized regularized long wave model and the generalized 
Korteweg-de Vries model [2, 3] to investigate soliton phenomena and as a model for small-am-
plitude long waves on the surface of water in a channel by Peregrine [4, 5] and Benjamin et 
al. [6]. The investigation of GEWM extends the opportunity of studying the construction of 
secondary solitary waves and/or radiation obtain intuition in the corresponding developments 
of particle physic [7]. This model attracted an increasing attention in physical situations such 
as long waves in near-shore zones, unilateral waves propagating in a water channel, and many 
others. For the special case p = 1, the GEWM model becomes the EWM [8] and for p = 2, the 
GEWM gets the modified EWM [9].

In recent years, fractional-order models have gained considerable popularity and im-
portance in various fields of science and engineering [1]. Numerous scientific fields, such as 
mathematics and engineering make use of fractional calculus in applications such as anomalous 
diffusion and signal processing. Since phenomena can be described more accurately via frac-
tional derivative. Due to this reasons, the analytical and numerical methods have increasingly 
been used to solve fractional models, see [10-20].

The main aim of this work is to construct a computational approach based on the ra-
dial basis function (RBF) to solve the non-linear TFGEWM.  

Numerical formulation

 To construct the numerical solution of eq. (1), we consider a uniform grid of spatial 
mesh points {xj = jh|j = 1, 2, 3,..., N}in the bounded domain [a, b], where x1, xN are the bound-
ary points, and the spatial mesh points [0, T] are tagged as t n = nδt, n = 0, 1, 2, 3, ..., M, where  
h = (b – a)/N, δt = T/M, and un = un(xi) = u(xi, tn).

Time discretization strategy 

 Inspired by [20], the approximation of temporal fractional derivative term appearing 
in eq. (1) was discretized: 
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The time derivative of non-linear TGEWM is discretized by means of the common 
finite difference (FD) formula, which consists of space derivatives using the θ-weighted (0 ≤ θ 
≤ 1) scheme between two successive times n and n +1:
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where u(x, t n+1) = un+1, f (x, t n+1) = f n+1, and t n+1 = t n + δt.
Lemma 1. The non-linear term (upux)n+1 can be linearized [21]: 
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Substituting from eqs. (4) and (6) into eq. (5), we obtain:
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Spatial discretization, the RBF collocation method in global mode (GRBF) 

 The RBF interpolation method uses linear combinations of translates of one function 
ϕ of a single real variable [21, 22]. The numerical approximation u(xi, tn) at a point of interest 
xi is expanded: 
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where {λn
j} are unknown coefficients of the nth time layer ϕ(rij) RBF, rij =|xi – xj|. The inverse 

multiquadric (IMQ) 1/(c2 + r2)1/2, inverse quadratic (IQ) (c2 + r2)–1, and multiquadric (MQ)  
(c2 + r2)1/2 is globally supported RBF where constant c are commonly known as the RBF shape 
parameter. The unknown coefficient vector λn

j, j = 1,..., N will be obtained by the collocation 
method. The system (8) can be put in a matrix form as below: 

n nλ=u A (9)
 One can split the matrix A into two matrices, namely Ab (matrix-associated bound-

ary), and Ad (matrix-associated internal) which correspond to two boundary points and N – 2 
interior points: 
 A + Ad + Ab

where
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By inserting eq. (8) into eq. (16), one gets the following equations in the interior 
points of the domain set [a, b]:
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where 
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For the boundary points, we obtain the following relations: 
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Rewriting eqs. (10) and (11) in a matrix form, it is to illustrate: 
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The accent × defines that the ith component of the vector un is multiplied to every element 
of the ith row of matrix. The relation (12) exhibits a system of N linear equations in N unknown 
coefficients λj. The numerical solution my be achieved from eq. (8) at any node in the interval [a, 
b] posterior to obtaining the values of the unknown vector λj , j = 1, 2,..., N at each time step.

Spatial discretization, the local RBF 
in finite difference mode 

This local RBF technique can be viewed as 
a generalized form of the traditional FD technique, 
hence, it is also known as the RBF-FD technique 
[21, 23]. For the convenience of marking, we as-

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The distributed nodes in the computational domain

Stencil node i

Figure 1. The schematic diagram for stencil 
in the 1-D computational domain
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suming that S I ={xk
(i) ,...,xNt

(i) }⊆ ζ be the local support domain (stencil), and every point xk
(i) cor-

responds to a point xi in the collection points set ζ = {x1,...,xN} that be an uniform partition of [a, 
b] where x1 = a and xN = b. 

The derivatives of function uk(x) can be represented approximately applying only func-
tion values in the stencil of xi: 
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where wi,j
x,1 and wi,j

x,2 denote the RBF-FD coefficients corresponding to the first and second order 
derivatives with respect to x, and NI is the number of nodes in the stencil of ith node. The RBF-
FD stencil of size NI requires the NI  – 1 nearest neighbors, see fig. 1. By replacing relations 
(13) in eq. (16) and collocating it in for time steps k = n, n + 1 yields in the following time 
semi-discretization equation:
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After imposing the boundary conditions, we can write the aforementioned relations 
in the matrix notation:

1n nu u+ = +A B F (15)
where the elements of A, B, and F are
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If boundary node xk is in the support domain of node xi then F is updated: 
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The stability of the numerical scheme

 In this section, we will describe the stability of the proposed numerical solution. In 
the non-linear convective term, we must first freeze one variable locally, then use the standard 
Fourier analysis to obtain the condition for stability to be imposed on the time step δt. By ap-
plying the proposed method for the locally constant equation in the case f  ≡ 0:
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where A = un, B = ux
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 In view of the Von Neumann’s method for each j by taking un
j  = ζ ne𝓁φxj and substituting 

in eq. (16), and after simplifying we obtain:
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In the aforesaid relation by choosing θ = 1/2 and after simplifying, the inequality   
(Q – P) ≥ 0 holds. Consequently, it concludes that | ζ | ≤ 1 [21]. Therefore, the necessary condi-
tion for the stability is provided and we can state that our method is convergence. 

Results and discussion

 This section presents one prototype example to show the efficiency and the validation 
the techniques discussed in the previous section. To measure the accuracy of the schemes, we 
compute the following error norms: 
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where uj = u(xj, T), Uj = (xj, T) are the exact and approximate solutions, respectively. The conser-
vation property belonging to the TFGEWE will be assessed through to show that the algorithm is 
significant the estimation of quantities pertaining to mass, momentum, and energy conservation:
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Let us consider the non-linear TFGEWM:
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where µ is a positive value and the subscripts x and t denote differentiation [24]. For the spe-
cial case α = 1, the aforementioned fractional equation becomes the classical modified EWM 
with the exact solution u(x, t) = A0sech[n(x – ωt)] where ω = A0

2 / 2. Table 1 reports the RMS 
error and L∞ error of the approximated solutions. It can be mentioned that the numerical re-
sults obtained by the RBF-FD method are in close agreement with the exact solution. On the 
other hand, the interpolation matrix of the RBF-FD method is a sparse and well-conditioned 
matrix when increase the number of nodes can be increased. The conservation quantities I1, I2, 
and I3 obtained are illustrated in tab. 2. From the numerical results given in tab. 2, it can be 
noted that the conservation values remains constant during the simulation. Figures 2 and 3 plot 
the numerical solutions and errors L∞ obtained with with values of A0 = 0.05 and 0.1, n = 1,  
α = 0.9 and x ∈ [–1.2, 1.2] by using our proposed schemes. We can see that the error observed in 
the GRBF method increases more than when using the RBF-FD method. In addition, the char-
acteristics of figs. 2 and 3 are consistent with [24, fig. 2]. In addition, tab. 3 demonstrates the L∞ 
error for MQ-RBF and IQ-RBF. It is worthy of note that we employed only the first eight terms 
of the series (as an exact solution) achieved from DTM method in [24] for the obtained numerical 
results. 

Table 1. The numerical errors in the solution with δt = 0.01 and θ = 1/2 

Methods T c N NI Cond(M) L∞ RMS 

RBF-FD 1 0.65 200 55 5.8113 ⋅ 105 9.7715 ⋅ 10–6 7.4482 ⋅ 10–6

GRBF 1 0.65 200 – 1.6745 ⋅ 1018 1.4391 ⋅ 10–4 8.6930 ⋅ 10–5

RBF-FD 2 0.65 200 55 5.8113 ⋅ 105 4.3439 ⋅ 10–5 3.3507 ⋅ 10–5

GRBF 2 0.65 200 – 1.6745 ⋅ 1018 4.3574 ⋅ 10–4 3.2931⋅ 10–4

RBF-FD 3 0.50 200 55 5.8113 ⋅ 105 8.7382 ⋅ 10–5 6.6727⋅ 10–5

GRBF 3 0.50 200 – 1.6745 ⋅ 1018 8.6637 ⋅ 10–4 6.6055⋅ 10–4

RBF-FD 4 0.90 200 55 5.8113 ⋅ 105 1.2738 ⋅ 10–4 9.7154⋅ 10–5

GRBF 4 0.90 200 – 1.6745 ⋅ 1018 1.2673 ⋅ 10–3 9.6583⋅ 10–4

Table 2. Invariant quantities by choosing A0 = 0.1, h = 0.01, n = 1,  
α = 0.5, and x ∈ [–1.2, 1.2] for c = 0.95 for single solitary wave

 δt [24] Present method

 I1 I2 I3  I1 I2 I3

0.00  0.19840108 0.01989219 0.00012931 0.19851138 0.02063038 0.00012873

0.01 0.19840107 0.01989220 0.00012931  0.19851186 0.02063057 0.00012873

0.02  0.19840105 0.01989220 0.00012931  0.19851180 0.02063048 0.00012873

0.03 0.19840104 0.01989221 0.00012931  0.19851180 0.02063056 0.00012873

0.04 0.19840102 0.01989221 0.00012931 0.19851245 0.02063054 0.00012872

0.05 0.19840100 0.01989221 0.00012931 0.19851168 0.02063048 0.00012872

0.06 0.19840099 0.01989222 0.00012931 0.19851281 0.02063048 0.00012872

0.07 0.198401097 0.01989222 0.00012931 0.19851038 0.02063047 0.00012872

0.08  0.198401096 0.01989223 0.00012931 0.19851861 0.02063047 0.00012872
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Figure 2. The approximate solutions and evaluated errors for (a) A0 = 0.05, (b) A0 = 0.1 with α = 0.9,  
h = 0.1, n = 1, δt = 0.05, c = 0.96 and x ∈ [–1.2, 1.2] by using RBF-FD method at T = 1

Conclusion

 This paper adopted the effect of the fractional order derivative on the structure and 
propagation of the resulting solitary waves obtained from TFGEWM. The numerical results 
obtained in section Results and discussion and the comparisons between them and several other 
techniques indicate the considerable accuracy of proposed approach. The results obtained from 
the RBF-FD technique are somewhat similar to those obtained from the GRBF technique. The 

Table 3. The numerical errors using MQ-RBF and IQ-RBF  
with A0 = 0.05, n = 1, α = 0.9, and x ∈ [–1.2, 1.2] at T = 10, and h = 0.01 

δt  MQ IQ-RBF
 c L∞ c  L∞

8/10 1.00 2.2493 ⋅ 10–3 0.90 5.5563 ⋅ 10–3

4/10 1.00 1.1106 ⋅ 10–3 0.90 2.7172 ⋅ 10–3

2/10 0.90 5.2511 ⋅ 10–4 0.85 1.3514 ⋅ 10–3

1/10 0.90 2.5741 ⋅ 10–4 0.90 6.5241 ⋅ 10–4

5/100 0.85 1.2068 ⋅ 10–4 0.90 3.1712 ⋅ 10–4

5/200 1.00 5.5988 ⋅ 10–5 1.00 1.5177 ⋅ 10–4
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system matrix corresponding to the GRBF technique is ill-conditioned and dense. Contrarily, a 
well-conditioned and sparse matrix is observed in the RBF technique. Therefore, the quantity 
of nodes in the RBF-FD technique may be increased to a certain level. Both of these techniques 
can be applied to high dimensional problems. It has been shown that the linearized scheme of 
the proposed approach is unconditionally stable using the linearized stability analysis. 
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Figure 3. Graphs of approximation solution and resulted error for A0 = 0.05, n = 1, α = 0.9, 
and x ∈ [–1.2, 1.2] by using GRBF method with h = 0.05, δt = 0.005, and c = 0.75



Can, N. H., et al.: Numerical Computation of the Time Non-Linear Fractional ... 
S58 THERMAL SCIENCE: Year 2020, Vol. 24, Suppl. 1, pp. S49-S58

References 
[1] Oldham, K. B., Spanier, J., The Fractional Calculus, Mathematics in Science and Engineering, Elsavier, 

Amsterdam, The Netherlands, Vol. 111, 1974
[2] Kaya, D., A Numerical Simulation of Solitary-Wave Solutions of the Generalized Regularized Long-

Wave Equation, Applied Mathematics and Computation, 149 (2004), 3, pp. 833-841
[3] Kaya, D., El-Sayed, S. M., An Application of the Decomposition Method for the Generalized KdV and 

RLW Equations, Chaos, Solitons and Fractals, 17 (2003), 5, pp. 869-877
[4] Peregrine, D., Calculations of the Development of an Undular Bore, Journal of Fluid Mechanics, 25 

(1966), 2, pp. 321-330
[5] Peregrine, D. H., Long Waves on a Beach, Journal of Fluid Mechanics, 27 (1967), 4, pp. 815-827 
[6] Benjamin,T. B., et al., Model Equations for Long Waves in Non-Linear Dispersive Systems, Philosophi-

cal Transactions of the Royal Society of London A, 272 (1972), 1220, pp. 47-78
[7] Courtenay Lewis, J., Tjon, J., Resonant Production of Solitons in the RLW Equation, Physics Letters A, 

73 (1979), 4, pp. 275-279
[8] Zaki, S., A Least-Squares Finite Element Scheme for the EW Equation, Computer Methods in Applied 

Mechanics and Engineering, 189 (2000), 2, pp. 587-594
[9] Gardner, L., Gardner, G., Solitary Waves of the Equal Width Wave Equation, Journal of Computational 

Physics, 101 (1992), 1, pp. 218-223
[10] Inc, M., et al., Modified Variational Iteration Method for Straight Fins with Temperature Dependent Ther-

mal Conductivity, Thermal Science, 22 (2018), Suppl. 1,  pp. S229-S236
[11] Akgul, A., et al., New Method for Investigating the Density-Dependent Diffusion Nagumo Equation, 

Thermal Science, 22 (2018), Suppl. 1, pp. S143-S152
[12] Moallem, G. R., et al., A Numerical Scheme to Solve Variable Order Diffusion-Wave Equations, Thermal 

Science, 23 (2019), Suppl. 6, pp. S2063-S2071
[13] Ganji, R., Jafari, H., Numerical Solution of Variable Order Integro-Differential Equations, Advanced 

Mathematical Models and Applications, 4 (2019), 1, pp. 64-69
[14] Aziz, R., Kumawat, Y., Marichev-Saigo-Maeda Fractional Calculus Operators with Extended Mittag-Lef-

fler Function and Generalized Galue Type Struve Function, Advanced Mathematical Models and Appli-
cations, 4 (2019), 3, pp. 210-223

[15] Jafari, H., Tajadodi, H., New Method for Solving a Class of Fractional Partial Differential Equations with 
Applications, Thermal Science, 22 (2018), Suppl. 1, pp. S277-S286

[16] Khan, H., et al., Existence and Data Dependence Theorems for Solutions of an ABC-Fractional Order 
Impulsive System, Chaos, Solitons and Fractals, 131 (2020), 109477

[17] Khan, A., et al., Analytical Solutions of Time-Fractional Wave Equation by Double Laplace Transform 
Method, The European Physical Journal Plus, 134 (2019), 4, 163

[18] Khan, H., et al., A Singular ABC-Fractional Differential Equation with p-Laplacian Operator, Chaos, 
Solitons and Fractals, 129 (2019), Dec., pp. 56-61

[19] Khan, H., et al., A Fractional Order HIV-TB Coinfection Model with Non-Singular Mittag-Leffler Law, 
Mathematical Methods in the Applied Sciences, 43 (2020), 6, pp. 3786-3806

[20] Golbabai, A., et al., Numerical Investigation of the Time Fractional Mobile-Immobile Advection-Dis-
persion Model Arising from Solute Transport in Porous Media, International Journal of Applied and 
Computational Mathematics, 5 (2019), 3, 50

[21] Rashidinia, J., Rasoulizadeh, M. N., Numerical Methods Based on Radial Basis Function-Generated Fi-
nite Difference (RBF-FD) for Solution of GKdVB Equation, Wave Motion, 90 (2019), Aug., pp. 152-167

[22] Fasshauer, G. E., Meshfree Approximation Methods with MATLAB: (With CD-ROM), World Scientific 
Publishing Company, Singapore, Vol. 6, 2007

[23] Tolstykh, A., Shirobokov, D., On Using Radial Basis Functions in A Finite Difference Mode with Appli-
cations to Elasticity Problems, Computational Mechanics, 33 (2003), 1, pp. 68-79

[24] Merdan, M., et al., Numerical Solution of Time-Fraction Modified Equal Width Wave Equation, Engi-
neering Computations, 29 (2012), 7, pp. 766-777

Paper submitted: April 14, 2020
Paper revised: May 20, 2020
Paper accepted: May 26, 2020

© 2020 Society of Thermal Engineers of Serbia
Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.

This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions


