
Wang, F., et al.: The Analytic Solutions for the Unsteady Rotating Flows of the ... 
THERMAL SCIENCE: Year 2020, Vol. 24, No. 6B, pp. 4041-4048	 4041

THE  ANALYTIC  SOLUTIONS  FOR  THE  UNSTEADY  ROTATING  
FLOWS  OF  THE  GENERALIZED  MAXWELL  FLUID  BETWEEN  

COAXIAL  CYLINDERS

by

Fang WANG  a*, Wang-Cheng SHEN  a, Jin-Ling LIU  a, and Ping WANG  b
a School of Mathematics and Statistics, Changsha University of Science and Technology, 

Changsha, Hunan, China 
b School of Computer and Artifical Intelligence, Xiamen Institute of Technology, Xiamen,  

Fujian, China

Original scientific paper 
https://doi.org/10.2298/TSCI2006041W

In this paper, we consider the unsteady rotating flow of the generalized Maxwell 
fluid with fractional derivative model between two infinite straight circular cyl-
inders, where the flow is due to an infinite straight circular cylinder rotating and 
oscillating pressure gradient. The velocity field is determined by means of the com-
bine of the Laplace and finite Hankel transforms. The analytic solutions of the 
velocity and the shear stress are presented by series form in terms of the gener-
alized G and R functions. The similar solutions can be also obtained for ordinary 
Maxwell and Newtonian fluids as limiting cases.
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Introduction

As we know that the generalized Maxwell fluid is a subclass of non-Newtonian fluids, 
which does not obey the Newtonian postulate that the stress tensor is directly proportional to 
the rate of deformation tensor [1]. Numerous traditional integer order differential models can 
not describe the response characteristics of these non-Newtonian fluids. In order to describe 
the rheological properties of wide classes of materials more clearly and deeply, the rheological 
constitutive equations with fractional derivatives have been introduced (see [2-8] and the ref-
erence therein). Furthermore, it has been shown that the constitutive equations with fractional 
derivatives are also linked to the molecular theories [2]. The modified viscoelastic models were 
provided to describe the behavior for Xanthan gum in [9]. The fractional derivative models of 
non-Newtonian fluids were produced by replacing the time derivative of an integer order by the 
Riemann-Liouville fractional differential operator [10-15].

Based on the previous statements, the aim of the paper is to interest into the torsional 
oscillatory motion of the generalized Maxwell fluid between two infinite coaxial circular cyl-
inders, both of them oscillating around their common axis with the given angular frequencies.
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Torsional oscillations between two cylinders

Constitutive equations

Let us consider the classical differential model, given as:

	 p= − + SΤ Ι  and [ ( ) ] { + [ ( ) ]}T T
rλ µ λ+ + ⋅∇ − − = + ⋅∇ − −S S V S LS SL A A V A LA AL 	

where T is the Cauchy stress tensor, p− I – the indeterminate spherical stress, S – the extra 
stress tensor, V – the velocity vector, L – the velocity gradient, T= +A L L  – the Rivlin-Ericksen 
tensor, µ  – the dynamic viscosity, λ and rλ  are the relax and delay constants, ∇ – the gradient 
operator, and T  – the transpose operation. 

It leads to the Newtonian fluids when 0rλ λ= =  and the Maxwell fluids when 0rλ = , 
respectively. 

Here, we now replace the classical differential operator by the Riemann-Liouville 
fractional derivative operator and consider the following constitutive equations of the incom-
pressible generalized Maxwell fluid, e. g.,

	 p= − + SΤ Ι    and   [ ( ) ]T
tDαλ µ+ + ⋅∇ − − =S S V S LS SL A 	 (1)

where ( )tD f tα is denoted as the Riemann-Liouville fractional derivative of the function ( )f t , 
defined as [11, 15, 16]:

	 0
0

1 d( ) ( ) ( )d
(1 ) d

t

D x t t s x s s
t

α α

α
−= −

Γ − ∫ ,   0 1α< < 	

and ( )Γ ⋅ is the Gamma function [15, 16].

Mathematical formulation of problem and governing equation

In the cylindrical co-ordinates ( , , )r zθ , the axial couette flow velocity is given:

	 ( , )u r t eθ=V 	
where eθ  is the unit vector in the θ -axis. 

At the moment 0t = , then we have that:

	 ( ,0)r =V 0    and   ( ,0)r =S 0 	
Thus, it follows that:

	 1(1 )tD u
r r

αλ τ µ ∂ + = − ∂ 
	 (2)

since 0rr rz zθ θθ= = = =S S S S , and ( , ) ( , )rr t r tθτ = S  is the shear stresses, where λ is the mate-
rial constant.

Considering the pressure gradient and ignoring body forces in the axial direction, the 
balance of linear momentum reads:

	
2

2
1 1 ( )u P r

t r rr
τρ

θ
∂ ∂ ∂

= − +
∂ ∂ ∂

	 (3)

where ρ  is the density of the fluid.
We consider an incompressible generalized Maxwell fluid at rest in the annular region 

between two infinite circular cylinders of the radius 1R  and 2R  2 1( )R R> .
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When 0t += , the inner cylinder is suddenly moved with a time-dependent pressure 
gradient in the θ -axial direction, e. g.:

	 0 sin( )P P tρ ω
θ
∂

= −
∂

	

The associated initial and boundary conditions are:

	 ( ,0)( ,0) 0u ru r
t

∂
= =

∂
	 (4)

	 1 1 1( , ) sinu R t tω β=    and   2 2 2( , ) sinu R t tω β= 	

where 1 2 1 2, , ,andω ω β β  are the constants, 0t >  and 1, 2[ ]r R R∈ .

Calculation of the velocity field and the shear stress

Making use of eqs. (2)-(4) and taking the Laplace transform and inverse transform of 
u, we have that:

	 1 1( , ) L [ ( , ); ] ( , )e d
2

a i
st

a i

u r s u r s t u r s s
i

+ ∞
−

− ∞

= =
π ∫ 	

and

	 1L[ ( ), ] L ( ) (0)tD u t s s u t D uα α α−= − 	

Taking Laplace transform of eq. (2), we obtain:

	
2

2 2
1 1,

1 1r

u u
u ur r u

r r rs s r rθ α α

µ
τ µτ

λ λ

∂ −   ∂ ∂ ∂∂ = = + − 
∂ ∂+ + ∂ 

	 (5)

Then,

	
2

0
2 2 2 2

1 1
1

P u usu u
r r rs s r rα
ρ ω µρ

ω λ
 ∂ ∂

= + + − 
∂+ + ∂ 

	

and

	
2

0
2 2 2 2

(1 )1 1 (1 ) 0P su u s su u
r r rr r s

α αρ λ ω ρ λ
µ µω
+∂ ∂ +

+ − + − =
∂∂ +

	 (6)

The finite Hankel transforms of ( , )u r s  can be given:

	
2

1

1( , ) ( ) d , 1,2,
R

H n
R

u ru r s B rr r n= =∫  	

and nr  are the positive roots of the transcendental equation, e. g.:

	 1 1 1 1 1 2 1 2 1 1( ) ( ) ( ) ( ) ( )n n n n nB R r J R rr Y R r J R r Y R r= − 	

where 1( )J ⋅ and 1( )Y ⋅  are the Bessel functions of order zero of the first and second kind. 
Applying the finite Hankel transform in eq. (6) and taking into account the conditions 

in eq. (5), we find that:
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2

1

0 0 1 2
12 2 2 2

(1 ) (1 ) ( ) ( )1 ( )d
( )

R
n n

n
nR

P s P s B R r B R rr B rr r
r rs s

α αρ λ ρ ω λω
µ ω µ ω
+ + −

=
+ +∫ 	 (7)

where 0 1 2 1 2 0( ) ( ) ( ) ( ) ( )n n n n nB rr J rr Y R r J R r Y rr= − .
Since:

	

2
2
1

1

2 2 2

1 1 1

2

1 12 2

1 1 1

1 1 ( )d ( )

( )d ( ) d ( )d

R
R

n n n R
R

R R R

n n n n n n
R R R

u ur u B rr r urr B rr
r rr r

ur B rr r urr B rr r ur B rr r
r

 ∂ ∂
+ − = − + 

∂∂ 

∂  + + − ∂

∫

∫ ∫ ∫
	

and

	 [ ]1 0 1 2 1 2 0 1( ) ( ) ( ) ( ) ( ) ( )n n n n n n nB rr J rr Y R r J R r Y rr r B rr
r r
∂ ∂  = − = − ∂ ∂

	

	 1 1
2( ) ( ) ( ) ( )n n n nJ x Y x J x Y x
x+ +− = −
π

	

and

	 1 1 1 2 1 2 1 1( ) ( ) ( ) ( ) 0n n n nJ R r Y R r J R r Y R r− = 	
we have that:

	
2

1

2
21 22 2 1 1

12 2 2 2 2 2
1 12 1

( )1 1 2 2( )d
( )( ) ( )

R
n

n n H
nR

J R ru ur u B rr r r u
r r J R rr r s s

ω β ω β
β β

 ∂ ∂
+ − = − − 

∂ π π∂ + + 
∫ 	 (8)

and

	
2

1

1
(1 ) (1 )( )d

R

n H
R

s s s sr uB rr r u
α αρ λ ρ λ

µ µ
+ +

=∫ 	 (9)

With use of eqs. (7)-(9), we have that:

	

0 1 2 1 22 2 1 1
2 2 2 2 2 2

1 12 1

2

(1 ) ( ) ( ) ( )2 2
( )( ) ( ) ( )

(1 ) 0

n n n

n n

n H H

P s B R r B R r J R r
r J R rs s s

s sr u u

α

α

ρ ω λ ω β ω β
µ ω β β

ρ λ
µ

+ −
+ − −
π π+ + +

+
− − =

	

	

1 22 2 1 1 2 2
2 2 2 2 2 2 2 2 2 1 2

1 12 1 2

1 21 1
2 2 2 1 2

1 11

0
1 2 2 2

( ) (1 )2 2 2
( )( ) ( ) ( ) ( )

( )(1 )2
( )( ) ( )

(1 )
( )(

n
H

nn n n n

n

nn n

n

J R r s su
J R rs r s r s r s s r

J R rs s
J R rs r s s r

P s
s s r s

α

α

α

α

α

α

ω β ω β ω β ρ λ
β β β ρ ρλ µ

ω β ρ λ
β ρ ρλ µ

ρ ω λ
ρ ρλ µ ω

+

+

+

 +
= − − −π π π+ + + + +

+
− +π + + + 

+
+

+ + +
1 2( ) ( )

)
n n

n

B R r B R r
r
−

	

and
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	 1 2 0 1 1 2 1 2 0 1

0 2 1 2 1 2 0 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

n n n n n n

n n n n

B R r B R r J R r Y R r J R r Y R r
J R r Y R r J R r Y R r

− = − −
− +

	

By means of the inverse Hankel transform formula [1], we get:

	
2 22

1 1 1
2 2

1 1 1 1 2

( ) ( )
2 ( ) ( )

n n n
H

n n n

r J R r B rru u
J R r J R r

∞

=

π
=

−
∑ 	

If 2 2 2 2 2 2
1 2 2 1 2 1( ) [ ( ) ( )]/[( ) ]a r AR R r BR r R R R r= − + − − , then we have: 

	
2 2 2

1 1 1

2 2 2 2
1 2 2 1

1 1 12 2 2 2
2 1 2 1

( ) ( )( ) ( )d ( )d ( )d
R R R

n n n n
R R R

AR r R BR r Ra ra r B rr r B rr r B rr r
R R R R

− −
= = − +

− −∫ ∫ ∫ 	

	 ( ) ( ) ( ) ( )
2

1

2 2 2 2 21 2 1 2
1 2 2 2 1 2 1 2 2 2 1 2 1

( ) ( )( )d
R

n n
n n n n n

n nR

Y R r J R rr B rr r R J R r R J R r R Y R r R Y R r
r r

   = − − −   ∫ 	

	
2

1

2 2
1 21 2

12 2 2
1 12 1

( )( ) 2( )d
( )

R
n

n
nnR

J R rAR r R AB rr r
J R rR R r

−
=
π−∫    and   

2

1

2 2
2 1

12 2 2
2 1

( ) 2( )d
R

n
nR

BR r R BB rr r
R R r

−
=
π−∫ 	

It is not difficult to find that:

	
2

1

1 2
1 2 2

1 1

( )2 2( ) ( )d
( )

R
n

n n
nn nR

J R rB Aa ra r B rr r
J R rr r

= = −
π π∫ ,   1 1

2 2
1

A
s
ω β

β
=

+
   and   2 2

2 2
2

B
s
ω β

β
=

+
	

Thus, we can obtain:

	

2 2 2 21 1 2 2
1 2 2 1 22 2 2 2

1 1 11 2
2 2 2 2

12 1 1 1 1 2

( ) ( )
( ) ( )

( ) ( ) ( )
n n

n n n

R R r R r R
J R r B rrs su

R R r J R r J R r

ω β ω β
β β ∞

=

− + −
+ +

= − π ⋅
− −

∑ 	

  

2
1 1 12 2 1 1

2 2 1 2 2 2 2 2 1 2
12 1 1 1 2 1

22
1 2 1 1 1 0 1

2 2
1 1 1 1 1 1 2

( ) ( )(1+ ) (1+ )
( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( 1) [ ( )+
( ) 2 ( ) ( )

n n

nn n n n

n n n n n

n n n n

J R r B rrs s s s
s s s r J R r J R r s s s r

J R r r J R r B rr P s B R r
J R r J R r J R r

α α

α α

α

ω β ρ λ ω β ρ λ
β ρ ρλ µ β ρ ρλ µ

ρ λ ω

∞

+ +
=

∞

=

⋅ + π ⋅
+ + + − + + +

+π
⋅

−

∑

∑ 2
2 2 1 2

( )]
( )( )

n

n

B R r
s s s rαω ρ ρλ µ+

−
+ + +

	(10)

Let us consider Laplace transform of the function , , ( , )a b cG d t  and , ( )E zα β , e. g.:

	 1
, , ( , ) L ( )b a c

a b cG d t s s d− − = −    and   1 ( ) 1 1
, ( ) L ! ( )n n nt E ct n s s cα β α α β α

α β
+ − − − − − − = + 	

where

	
( ) 1

, ,
0

( )
( , )

! [( ) ]

j j c a b
j

a b c
j

c d t
G d t

j j c a b

+ − −∞

=

=
Γ + −∑ 	

is the generalized G function [11], ( ) jc  is the Pochhammer polynomial [5], and , ( )E zα β  is the 
generalized Mittag-Leffler function [12, 15, 16].



Wang, F., et al.: The Analytic Solutions for the Unsteady Rotating Flows of the ... 
4046	 THERMAL SCIENCE: Year 2020, Vol. 24, No. 6B, pp. 4041-4048

Here, we present the velocity field, given as:

	

[ ]

22 2 2 2
1 1 1 21 2 2 1

1 1 2 22 2 2 2 2 2
12 1 2 1 1 1 1 2

2
1

2 , ,
0 0

2
1 1 1 1
2 2

1 1 1 1 2

( ) ( )( ) ( )sin sin
( ) ( ) ( ) ( )

sin ( ) ( , )d

( ) ( )
( ) ( )

n n

n n n
k t

n
k k

k

n n

n n n

J R r B rrR R r R r Ru t t
R R r R R r J R r J R r

r t G

J R r B rr
J R r J R r

α

ω
ω β ω β

µ
β τ λ τ τ

λρ

ω

∞

=

∞
−

−
=

∞

=

− −
= + − π ⋅

− − −

 
⋅ − − − +  

 

+π
−

∑

∑ ∫

[ ]

[ ]

2
1 2

0 1 1

22
1 1 1 1 0 1 2

1 , ( 1), 2 2
1 1 1 1 20

2
1

, ( 1),
0 0

( )
( )

( ) ( ) [ ( ) ( )]sin ( ) ( , )d
2 ( ) ( )

sin ( ) ( , )d

k
n n

k n

t
n n n n n

k k
n n n

k t
n

k k
k

r J R r
J R r

r J R r B rr P B R r B R rt G
J R r J R r

r t G

α

α

µ
λρ

β τ λ τ τ

µ
ω τ λ τ τ

λρ

∞

=

∞
−

− +
=

∞
−

− +
=

 
− ⋅  
 

−π
⋅ − − + ⋅

−

 
⋅ − − −  

 

∑ ∑

∑∫

∑ ∫

	

and obtain that

	 1 1 1( , ) sinu R t w tβ= 	
since 1( ) 0nB R r = .

With aid of eqs. (5) and (10), we have that:

	

1 2 1 2 2 2 1 2
2 2 2 2 2 2 2
2 1 2 1

1 1 1 2

2 2
1 1 1 1 2

2
1 1 1

2 2
1 1 1 1 2

21
1 1 ( )

2( ) ( ) ( )

2( ) ( )
2( ) ( ) ( )

( ) ( )

n n n n

n n n

n n n n n

n n n

R R R Ru
r rs s R R r s s

J R r B rr r B rr
rK

J R r J R r

r J R r B rr r B rr
r

J R r J R r

α α
ω β ω βµ µτ

λ λ β β

µµ
∞

=

=

 ∂ = − = − +  ∂+ + − + +   
 −  π + π − ⋅

−

 −  ⋅
−

∑

0 1 2
2 2 1 2

[ ( ) ( )]
( )( )

n n

n

P B R r B R r
s s s rα
ωρ

ω ρ ρλ µ

∞

+

−
+ + +

∑

	

where

	 2 2 1 1 1 1 1 2
2 2 1 2 2 2 1 2

2 1

( ) ( )
( )( ) ( )( )

n n

n n

J R r s J R r sK
s s s r s s s rα α

ω β ρ ω β ρ
β ρ ρλ µ β ρ ρλ µ+ += −

+ + + + + +
	

In a similar way, we have that:

	

[ ] [ ]{ }

[ ] [ ]{ }

11 2
1 2 2 2 1 1 ,02 2 2

2 1 0

1 1 1 2

2 2
1 0 1 1 1 2

1 1 2 1 2 1 1 2

2( , ) sin ( ) sin ( ) ( ,0, )d
( )

2( ) ( ) ( )

( ) ( )

( )sin ( ) ( )sin ( )

t

kn n n n
n

n k n n

n n

R Rr t R t R t R
R R r

J R r B rr r B rr
rr

J R r J R r

J R r t J R r t G

α

α

µτ ω β τ ω β τ λ τ τ
λ

µµ
λ λρ

ω β τ ω β τ

−

∞ ∞

= =

= − − − − −
−

 −   π  − − ⋅  −  

⋅ − − −

∫

∑∑

1
, , 1

0

( , )d
t

k k λ τ τ−
− + − −∫
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[ ]

2
1 1 12

0 1 22 2
1 0 1 1 1 2

2
1

, ( 1), 1
0

2( ) ( ) ( )
[ ( ) ( )]

2 ( ) ( )

sin ( ) ( , )d

n n n n n

n n
n k n n

k t
n

k k

r J R r B rr r B rr
r P B R r B R r

J R r J R r

r t Gα

µ
λ

µ
ω τ λ τ τ

λρ

∞ ∞

= =

−
− + +

 − π  − − ⋅
−

 
⋅ − − −  
 

∑∑

∫

	

Limiting case

Making 1α →  into eq. (2), we obtain:

	

2 2 2 2
1 2 2 1

1 1 2 22 2 2 2
2 1 2 1
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11 1 1 2
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∞

=
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−

∑ ∑ ∫
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∑ ∫

∑ ∑ ∫

	

and
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Conclusion

In this work, we have obtained the analytic solutions of the velocity and the shear 
stress presented by integral and series form in terms of the generalized G and R functions for a 
generalized Maxwell fluid between coaxial cylinders. Moreover, for 1α → , it is found that the 
analytic velocity solutions correspond to the standard Maxwell fluid in the same motion.
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Nomenclature
i(x,t) 	 –	 current on the cable, [A]
P	 –	 pressure, [Pa]

t	 –	 time, [s]
u(r,t)	 –	 velocity, [ms–1]
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