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Introduction

In this paper, we consider the following variable coefficients modified Korteweg-de 
Vries equation (MKdV) with local fractional derivative in fractal media:
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subject to the initial condition:
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The differential equations with local fractional derivative have recently proved to be 
suitable tools for modeling many non-differentiable phenomena. Many physics problems in 
fractal media lead to non-linear models involving local fractional derivatives [1-6]. For ex-
ample, eq. (1) arises in the mathematical models of the various non-linear phenomena, such 
as heat conduction in fractal porous media [7-15]. The problem of eq. (1) is often difficult or 
impossible to solve analytically it. In recent years, some analytical methods for solving local 
fractional differential equations have been studied by many authors [16-19]. The new iterative 
method (NIM) was proposed first by Daftardar-Gejji and Jafari in [20-22] and has proven useful 
for searching approximate analytical solutions of the non-linear local fractional differential 
equation.

To solve the problem (1)-(2) analytically by NIM, we recall the definition of local 
fractional integral operator.

The local fractional integral operator is the inverse operation of the local fractional 
derivative [23]:
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where a partition of the interval [ , ]a b  is denoted as 1( , ),j jt t +  0t a=  and Nt b=  with 1  j j jt t t+∆ = −  
and 0 1max{ , , , }Nt t t t∆ = ∆ ∆ ∆ .

The following formulas of local fractional derivative hold true:
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The new iterative method

To illustrate the NIM [20-22], we consider the following general function equation:

	 ( ) ( )u P u u f= + Ω + 	 (9)

where P is a linear operator, Ω is a non-linear operator from a Banach space Μ→Μ , and f is 
a known function.

Suppose that the solution u  of eq. (9) having the following form:
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Then the non-linear operator Ω  can be decomposed as:
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From eqs. (10) and (11), eq. (9) is equivalent to:
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Define the recurrence relation:

	 0 ( ) u f x= ,   1 0 0( )u P u G= +    and   ( ) ,     1,2,l l lu P u G l= + =  	 (13)
where

	 0 0( )G u= Ω 	 (14)
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Then we obtain the k-term approximate solution of eq. (9) as follows:

	 0 1 1, , ku u u u −= + + + 	 (16)

Solution of the problem (1)-(2)

Now, we derive the main algorithms of the NIM for solving the variable coefficients 
MKdV equation with local fractional derivative.

Consider the following variable coefficients modified MKdV equation with local frac-
tional derivative:
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Subject to the initial condition:

	 ( ,0) ( )u x xαϕ= 	

To apply NIM, we rewrite the eq. (17) as:
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Suppose that the solution of eq. (15) takes the form:
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and the non-linear term in eq. (17) is decomposed:

	
0

( , , ) k
k

uN x t u D
x

α

α

∞

=

∂
=

∂
∑ 	 (20)

where



Deng, S.-X., et al.: Approximate Analytical Solution for Modified Korteweg-de Vries Equation ... 
4030	 THERMAL SCIENCE: Year 2020, Vol. 24, No. 6B, pp. 4027-4032

	 0
0 0( , , ) uD N x t u

x

α

α
∂

=
∂

	

and

	
1 1

0 0 0 0
, , , , ,

k k k k

k i i i i
i i i i

D N x t u u N x t u u
x x

α α

α α

− −

= = = =

       ∂ ∂
= −       

∂ ∂       
∑ ∑ ∑ ∑   1,2,k =  	

Thus, according to eq. (13), approximate solution can be obtained:
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To illustrate the procedure and to test its effectiveness, we consider eq. (1) in the form:
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with the initial condition:
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By the aforementioned algorithms, we obtain:
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Thus, the 4 term−  approximate solution of (22) is given by:

	 0 1 2 3( , ) ( , ) ( , ) ( , ) ( , )u x t u x t u x t u x t u x t= + + + 	

Conclusion

This work presented the application of NIM to the variable coefficients MKDV equa-
tion with local fractional derivative. The NIM gives approximate analytical solutions of the 
equation in fractal media. Our example shows that the NIM is an efficient and reliable algorithm.
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Nomenclature
t	 –	 time, [s]
u(x, t) 	–	 wave speed, [ms–1]
x	 –	 space co-ordinates, [m]

Greek symbol

α	 –	 fractal dimension, [-]
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