CONTROL TEMPERATURE FLUCTUATIONS IN TWO-PHASE CUO-WATER NANOFLUID BY TRANSFIGURATION OF THE ENCLOSURES

Hadi POURZIAEI ARABAN\(^1\), Javad ALINEJAD\(^*\), Davood DOMIRI GANJI \(^2\)

\(^1\)Department of mechanical engineering, Sari branch, Islamic Azad University, Sari, Iran

\(^2\)Department of mechanical engineering, Babol Noshirvani University of Technology, Babol, Iran

\(^*\)Corresponding author; E-mail: Alinejad_javad@yahoo.com, Alinejad_javad@iausari.ac.ir

The innovation of this paper is to simulate two-phase nanofluid natural convection inside the transformable enclosure to control the heat transfer rate under different heat flux. Heat transfer of a two-phase CuO-water nanofluid in an enclosure under different heat flux has many industrial applications including energy storage systems, thermal control of electronic devices and cooling of radioactive waste containers. The Lattice Boltzmann Method based on the D2Q9 method has been utilized for modeling velocity and temperature fields. Streamlines, isotherms and nanoparticle volume fraction, have been investigated for control the heat transfer rate for several cases. The purpose of this feasibility study is to achieve uniform temperature profiles and \(T_{\text{max}} < 50^\circ\text{C}\) under different heat flux. Natural convection heat transfer in the rectangular and parallelogram enclosures with positive and negative angular adiabatic walls were simulated. The average wall temperature under heat flux boundary condition has been studied to predict optimal levels of effective factors to control the maximum wall temperature. The results illustrated parallelogram enclosures with positive angle of case 1 and case 3 and 4 with rectangular enclosures were best cases for considering physical conditions. Average of temperature for these cases were 37.9, 29.7 and 38.2, respectively.

Key words: enclosure transfiguration, heat transfer controlling, heat flux, lattice Boltzmann method, natural convection, two-phase nanofluid

1. Introduction

Heat transfer of a two-phase CuO-water nanofluid in an enclosure under different heat flux has many industrial applications including energy storage systems, thermal control of electronic devices and cooling of radioactive waste containers. In these applications, control the heat transfer rate of a two-phase nanofluid under different heat flux by transfiguration of the enclosure have been investigated. So it motivated the researchers to improve their accuracy by different ways, such as experimentally, numerically or analytically.

Not only Control the heat transfer rate in an enclosure have been improved the heat transfer mechanism, also using a two-phase nanofluid can be assisted the heat transfer in industries which both of these considered in this literature review. Above-mentioned industrial applications of the hybrid heat transfer [1]. In an attempt to solve many problems, particularly in fluid mechanics, the Lattice
Boltzmann method (LBM) [2] has been evolving over the last two decades. Physics of microscopic processes are taken into account by simplifying kinetic models in LMB. Fluid flows are then anticipated through the evolution of one-particle phase space distribution functions on associated macroscopic average properties. LBM simulations, based on the gas kinetic theorem, are based on two simple steps: particle distribution “collision” on Lattice nodes and stream “propagation” from one node to all neighbors along the Lattice directions [3]. Once streaming is done new distribution components of Lattice nodes are calculated, from which we obtain the updated macroscopic properties. This method of calculating macroscopic values essentially differs from what is done in other traditional CFD methods [4]. Algorithm simplicity, fully parallel computation and easy implementation of complex boundary conditions are among the numerous superiorities of LBM [5]. The lattice Bhatnagar-Gross-Krook (LBGK) model which is the most popular LBM is known for its remarkable abilities to solve complex fluid flow problems [6] such as natural convection flow, multiphase fluids and suspensions in fluids. Moreover, it is shown a strong potential in simulating nonlinear mathematical-physical equations [7]. It should be noted that these models always deal with stability issues and therefore in the last few years, several researches have been done to solve this problem [8] such as TRT models and multi-relaxation-time (MRT) model. Similar to other problems, stability issues exist for natural convection problems when the Rayleigh number is increased excessively. Two different forms of double MRT thermal LBM have been utilized by researchers, namely Fallah al. [9], Esfahani et al. [10], to improve the numerical stability. Significantly improved the numerical stability of the thermal lattice Boltzmann models. Based on the proposed model by Alinejad et al. [11], a simplified 3D thermal lattice Boltzmann model was presented by Gerdroodbary et al. [12], in which, the compression work and viscous heat dissipation were neglected for incompressible flows. Peiravi et al. [13], successfully used the 3D thermal lattice Boltzmann model to simulate different heat transfer problems. Alinejad et al. [14, 15] examined the hybrid heat transfer of an unstable fluid in a two-dimensional channel. Recently Liang et al. [16] studied three-dimensional model of multi-droplet impact on a liquid/vapor two-phase heat transfer on liquid film. Boubaker et al. [17] examined an experimental study of effect of self-rewetting fluids on the liquid/vapor phase change in a porous media. Park et al. [18] investigated the thermal performance of a heat transfer augmentation in two-phase flow heat exchanger using porous microstructures and a hydrophobic coating. Burk et al. [19] studied computational examination of two-phase microchannel array with hybrid heat spreading. Zhang et al. [20] experimentally investigated on single-phase and two-phase convection flow boiling heat transfer in an inclined rod bundle. Liu et al. [21] investigated quantify the uncertainty of MCFD simulations of two-phase flow and boiling heat transfer through a data-driven modular Bayesian approach. Jiang et al. [22] studied fluid flow and heat transfer characteristics of mist/steam two-phase flow in the U-shaped cooling passage. Song et al. [23] experimentally investigated condensation heat transfer performance on two-phase R14 flow patterns in a horizontal smooth tube. Lee et al. [24] experimentally and computationally examined on two-phase flow and heat transfer of highly subcooled nucleate flow boiling in a rectangular channel having two opposite heating walls. Zhang et al. [25] experimentally investigated two-phase flow and heat transfer in a self-developed MRI compatible LN2 cryoprobe based cryosurgery system. Moezzi et al. [26] numerically investigated hysteretic heat transfer study of liquid–liquid two-phase flow on a T-junction containing water-oil flow in cooling processes of microchannel. Alinejad et al. [40] numerically investigated droplet impact over the cubical cylinders with dynamic contact angles.
In the present study, the heat transfer of a two-phase nanofluid under different heat flux is modeled to enhance the heat transfer rate by transfiguration of the enclosure. LBM is used by FORTRAN software code to investigate controlling the heat transfer rate of a two-phase nanofluid under different heat flux by transfiguration of the enclosure. Then the flow and heat transfer characteristics are investigated for a two-phase nanofluid. Finally, in order to study more precisely, control the heat transfer rate under different heat flux by transfiguration of the enclosure have been investigated. In fact, the change in the amount of these parameters have been affected on the Streamline, isotherm, nanoparticle volume fraction, velocity and temperature fields.

2. Problem Definition

The heat transfer rate of a two-phase CuO-water nanofluid under different heat flux in a cubical enclosure is presented. The heat transfer characteristics are controlled by transfiguration of the enclosure. The boundary conditions for the mentioned problem are shown in Fig. 1. This Fig. shows a cubical enclosure that even in six case of different heat flux but in all of cases, total absolute value of heat flux is as the same and equal \(q'' \). The dimensions of cubical enclosure are \(L \times L \).

![Diagram showing six cases of different heat flux](image)

Figure 1. Schematic diagrams of physical models

The flow is considered incompressible and fluid properties are assumed constant except the density whose varying with the temperature. Hydrodynamic boundary conditions for Two-phase Nanofluid flow in enclosers are as follows:

\[
\begin{align*}
\begin{cases}
u = 0 & \text{at} & x = 0 \\
v = 0 & \text{at} & x = L \\
\end{cases}
\begin{cases}
x = 0 \\
y = 0 \\
x = L \\
y = L
\end{cases}
\end{align*}
\]

(1)
3. Simulation Methodology

3.1. Lattice Boltzmann Method

The lattice kinetic theory and especially the LBM have been developed as significantly successful alternative numerical approaches for the solution of a wide class of problems [27]. The LBM is derived from lattice gas methods and can be regarded as a first order explicit discretization of the Boltzmann equation in phase space [35-39]. This method (LBM) is a powerful numerical technique, based on kinetic theory, for simulating fluid flow and heat transfer [28, 29], and has many advantages in comparison with conventional CFD methods mentioned previously. In contrast with the classical macroscopic Navier–Stokes (NS) approach, the LBM uses a mesoscopic simulation model to simulate fluid flow [30, 31]. In the LBM, integral distribution functions over boundaries must be integral and calculated. Therefore, we need to obtain suitable equations for calculating distribution functions on boundaries for a given boundary condition. The present study examined two-dimensional (2-D) flow by a 2-D square lattice with nine velocities and temperature vectors (D2Q9 model) for modeling velocity of fluid flow and temperature fields. The velocity and temperature vectors c_0, \ldots, c_8, of the D2Q9 model are shown in Fig. 2.

![Figure 2. Two-dimensional vectors for 9-velocity and temperature lattice](image)

For each velocity and temperature vector, a particle DF is stored. The velocity of fluid flow and temperature vectors of the D2Q9 model are presented in Tab. 1.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_i</td>
<td>(0,0)</td>
<td>(1,0)c</td>
<td>(0,1)c</td>
<td>(-1,0)c</td>
<td>(0, -1)c</td>
<td>(1,1)c</td>
<td>(-1,1)c</td>
<td>(-1, -1)c</td>
<td>(1, -1)c</td>
</tr>
</tbody>
</table>

Table 1. Velocity and temperature vectors of the D2Q9 model

Where $c = \Delta x/\Delta t$ and k is the Lattice velocity direction. The LB model used in the present work is the same as that employed in [32]. The DFs are calculated by solving the Lattice Boltzmann Equation (LBE), which is a special discretization of the kinetic Boltzmann equation. The two-phase Boltzmann’s equation for a nanofluid can be expressed as follows [33]:

$$f_i^\sigma(x + e_i\Delta t, t + \Delta t) - f_i^\sigma(x, t) = -\frac{1}{\tau_\sigma^\sigma} \left(f_i^\sigma(x, t) - f_i^\sigma,eq(x, t) \right) + \frac{2\tau_\sigma^\sigma - 1}{2\tau_\sigma^\sigma} \left(\frac{F_i^\sigma \cdot e_i \Delta t}{B_i c_i^2} \right) + \Delta t \Delta f_i^\sigma$$

(2)

Where $\sigma = 1, 2$ represent the base fluid and the nano-particle components of the nanofluid and τ_σ^σ is the relaxation time of component σ, respectively. Also, in this equation e_i is the lattice velocity
vector in the ith direction and $f_{i}^{\sigma,eq}$ is the particle equilibrium distribution function associated with motion along the ith direction in the velocity space. The equilibrium density distribution functions of the σth component, $f_{i}^{\sigma,eq}$ for the current 2D application, based on D2Q9 model, are expressed as:

$$f_{i}^{\sigma,eq}(x,t) = \omega_{i}\rho_{\sigma} \left[1 + \frac{3\epsilon_{i} \cdot u_{\sigma,eq}}{c^{2}} + \frac{9(\epsilon_{i} \cdot u_{\sigma,eq})^{2}}{2c^{4}} - \frac{3(u_{\sigma,eq})^{2}}{2c^{2}} \right]$$

(3)

The lattice space δx and the lattice time step δt are taken as unity and their ratio $= \delta x/\delta t$. The macroscopic density, kinematic viscosity and velocity of the σth component are given by

$$\rho_{\sigma}(x,t) = \sum_{i} f_{i}^{\sigma}(x,t), \quad \nu_{\sigma} = (2\tau_{B}' - 1/6) c^{2} \Delta t \quad \text{and} \quad u_{\sigma} = \sum_{i} f_{i}^{\sigma}(x,t) e_{i}$$

respectively. In this equation, the equilibrium velocities $u_{\sigma,eq}$ is given as follows:

$$u_{\sigma,eq} = \frac{1}{\rho_{\sigma}} \sum_{i} f_{i}^{\sigma} e_{i} + \frac{F_{\sigma} \tau_{B}' \Delta t}{\rho_{\sigma}}$$

(4)

Table 2. Velocity and temperature vectors of the D2Q9 model

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_{i}</td>
<td>4/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
</tbody>
</table>

Where g_{i}^{σ} is the ith energy distribution function and τ_{B}^{σ} is the thermal relaxation time and $T^{\sigma} = \sum_{i} g_{i}^{\sigma}$ is the temperature of the component σ. The corresponding thermal diffusivity is calculated as $\alpha^{\sigma} = (2\tau_{B}' - 1/6) c^{2} \Delta t$. The interaction forces between nanoparticles and base fluid considered in this method include the buoyancy force, the gravity force, the drag force, the Brownian diffusion force, and the thermophoresis force. The Boussinesq approximation is applied to exert buoyancy force. The buoyancy term is given as follows:

$$F_{B} = \rho g \beta \Delta T$$

(7)

Where β is the thermal expansion coefficient and ΔT is the temperature difference. Thermophoresis force is written as follows [34].

$$F_{T} = 3\pi \mu d_{p} \left(\frac{2A}{2k + k_{p} \rho_{p} \mu} \right) \nabla T$$

(8)

Where A is the coefficient and (k, μ, ρ) and (k_{p}) are thermophysical properties of nanofluid and particles, respectively. The drag force is obtained from Stokes law for small particles as follows [34]:

$$F_{D} = 3\pi \mu d_{p} (V - V_{p})$$

(9)

Brownian motion is the random motion and the Brownian force can be expressed as [34]:

$$F_{B} = 3\pi \mu d_{p} \left(\frac{2A}{2k + k_{p} \rho_{p} \mu} \right) \nabla T$$

(8)
\[F_B = C \frac{KT}{R} \]

Where \(C \) is a coefficient, \(K \) is the Boltzmann constant. In this survey, we used CuO-nanoparticles. So, Thermo-physical nanofluid properties are assumed invariant, and are given in Tab. 3.

Table 3. Thermo-physical properties of water and CuO-nanoparticles

<table>
<thead>
<tr>
<th>Material</th>
<th>(\rho) (kg/m(^3))</th>
<th>(C_p) (J/kgK)</th>
<th>(k) (W/mK)</th>
<th>(\beta \times 10^5) (k(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>997.10</td>
<td>4179</td>
<td>0.61</td>
<td>21</td>
</tr>
<tr>
<td>Copper-Oxide (CuO)</td>
<td>6500</td>
<td>540</td>
<td>18</td>
<td>0.85</td>
</tr>
</tbody>
</table>

3.2. **Validation for LBM**

Figs. 3 provides a complete comparison of the results of the present simulation with the previous results. The temperature and velocity profiles in the middle of enclosure are horizontal and gradually deviates towards the hot and cold walls. Figs. 3 shows that our simulation results had acceptable accuracy and good agreement with M. Eslamian [34] in Ra=10\(^4\) and Ra=10\(^6\).

![Figure 3. Nanoparticle volume fraction distribution at Ra=10\(^4\) in (a) present study, (b) Ref. [34]](image-url)
4. Results and Discussion

In present study, heat transfer rate of a two-phase CuO-water nanofluid under different heat flux in a cubical enclosure is investigated. The heat transfer characteristics are controlled by transfiguration of the enclosure in six case of different heat flux. So, in Fig. 4 shows comparison temperature fields between these cases under different heat flux. We selected cases that orientation of their temperate field were smooth and maximum less than 50 °C, $T_{\text{max}} > 50$ °C. So, with these two conditions, we chose cases 3 and 4 that case 3 was better than case 4, Because case 4 was suitable with $y/h > 0.7$. Also, the best selection is an enclosure with heat flux rate $3q^\prime/2$ and heat flux array is triangular from down to up.

![Figure 4. Comparison temperature fields between different enclosures under different heat flux](image)

Figure 4. Comparison temperature fields between different enclosures under different heat flux

In Fig. 5, streamlines, temperature fields and nanoparticle volume fraction with CuO-water nanofluid between case 3 and 4 is presented. This Figs shows that gradations of streamlines, temperature fields and nanoparticle are smooth for case 3. In case 4, temperature fields are focused on below part of hot wall but in case 3, temperature fields are all over the hot wall.
We designed solutions for cases 1, 2, 5 and 6 to orientation of their temperate field become smooth and maximum less than 50 °C, $T_{\text{max}}>50$ °C. So, we simulated parallelogram enclosures with positive and negative angle in adiabatic walls. These approaches able to orientation of temperate field in enclosures become smooth. Fig. 6, illustrated parallelogram enclosures with positive angle in case 1 and 2 cause to orientation of temperate field in these enclosures become smooth and $T_{\text{max}}>50$ °C. Also, parallelogram enclosures with negative angle in case 6 with $y/H>0.7$ gives smooth in orientation of temperate field with $T_{\text{max}}>50$ °C, but in case 5, parallelogram enclosures with positive and negative angle weren’t suitable solutions.
Fig. 7 illustrated that in cases 1 and 2 temperature fields under design parallelogram enclosure with positive angle were transferred better than normal conditions. Also, temperature fields in case 6 with design parallelogram enclosure with negative angle had conclusions better than parallelogram enclosure with positive angle and normal conditions. These results agreed with Figs. 6. Streamlines under conditions parallelogram enclosures with positive and negative angle were compacted and two-phase nanofluid flow were intensity. According to Fig. 8, All of these conditions are suitable for especial and different performances. For example, when we needed to compacted streamlines in cold wall so, parallelogram enclosure with negative angle in case 1 was suitable.

In Fig. 9 illustrated when we designed parallelogram enclosure with positive angle so, CuO-water nanoparticles volume fraction was transferred to cold wall more than normal conditions vice versa parallelogram enclosure with negative angle. So, we can better and faster transfer heat flux to cold wall in different situations.

![Figure 7. Comparison temperature fields between enclosures into a) Rectangular b) Parallelogram with positive angle c) Parallelogram with negative angle]
Figure 8. Comparison streamline between enclosures into a) Rectangular b) Parallelogram with positive angle c) Parallelogram with negative angle

Figure 9. Comparison nanoparticle volume fraction between enclosures into a) Rectangular b) Parallelogram with positive angle c) Parallelogram with negative angle

Tab. 4 presented Average of temperature on the cold wall of enclosures. So, according to base of rectangular enclosures, variation rates of average of temperature in cases 1 and 2, parallelogram enclosures with positive angle were 0.04% and -0.11%, respectively. Also in case 6, parallelogram enclosure with negative angle had 0.01% increasing in rates of average of temperature. These compressions were done according to Fig. 6 that we chose these improvement cases with conditions;
orientation of temperate field in these enclosures became smooth and $T_{\text{max}} > 50 ^\circ C$. So, case 1, parallelogram enclosures with positive angle and case 3 and 4 were best cases that average of temperature in case 1 was close to case 4 with rectangular enclosure.

Table 4. Average of temperature on the left wall between different conditions of enclosures

<table>
<thead>
<tr>
<th>Rectangular</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 5</th>
<th>Case 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallelogram with positive angle</td>
<td>36.532</td>
<td>27.804</td>
<td>29.760</td>
<td>38.228</td>
<td>34.148</td>
<td>42.305</td>
</tr>
<tr>
<td>Parallelogram with negative angle</td>
<td>37.900</td>
<td>24.741</td>
<td>-</td>
<td>-</td>
<td>29.577</td>
<td>43.483</td>
</tr>
</tbody>
</table>

5. Conclusion

In this paper, a comprehensive numerical analysis and control the wall temperature fluctuations in a two-phase CuO-water nanofluid under different heat flux by designing the transfiguration of the enclosure was investigated. The D2Q9 LB method was used to solve the flow and temperature field. Streamlines, isotherms and nanoparticle volume fraction were exhibited for cases 1 to 6. Also, we simulated rectangular and parallelogram enclosures with positive and negative angular adiabatic walls. Finally, the main results summarized:

- Investigations show that cases 3 and 4 have approximately uniform temperature profiles on the hot wall and that their maximum temperature does not exceed 50 ºC. Of course, given that case 3 at all domain but case 4 within range $y/H > 0.7$ exhibits quite acceptable behavior.
- The best choice is a rectangular enclosure with a triangular heat flux on the wall (maximum $3q''/2$).
- With increasing of cuo nanoparticles to the fluid at all of the enclosures, temperature field improved.
- Simulation of cases 1, 2, 5 and 6 illustrated that the hot wall of case 1 and 2 with positive angle and case 6 ($y/H > 0.7$) with negative angle have uniform temperature profiles with $T_{\text{max}}<50 ^\circ C$

Nomenclature

- k_b = Boltzmann constant
- C_i = Lattice velocity
- C_s = Speed of sound
- K = Thermal conductivity [Wm-1 K-1]
- x, y = Coordinates [m]
- L = Dimensions of channel [m]
- f_i = Particle density distribution function
- f_i^{eq} = Equilibrium particle density distribution function
- g_i = Particle energy distribution function
- g_i^{eq} = Equilibrium particle energy distribution function
- g_y = Gravitational acceleration [ms-2]
- n_1, n_2 = Relaxation time constants
- Pe = Peclet number (Re. Pr)
- Pr = Prandtel number [uα-1]
- Re = Reynolds number [uLv-1]
- Ra = Rayleigh number [$gβΔTl^3v^{-1}α^{-1}$]
\(d \) = Spherical particle diameter of the solid
\(T_c \) = Temperature of the cold wall [K]
\(\tau_v \) = Relaxation time of flow field
\(\tau_c \) = Relaxation time of temperature field
\(\Delta T \) = Temperature difference [K]

Greek Symbols
\(\alpha \) = Thermal diffusivity [m\(^2\)s\(^{-1}\)]
\(\beta \) = Thermal expansion [K\(^{-1}\)]
\(\rho \) = Density [kgm\(^{-3}\)]
\(\mu \) = Dynamic viscosity [kgm\(^{-1}\)s\(^{-1}\)]
\(\nu \) = Kinematic viscosity [m\(^2\)s\(^{-1}\)]

Subscripts
\(c \) = Cold
\(i \) = Direction of lattice link
\(f \) = Fluid

References

