
 

 LONG-TERM  TRENDS  AND  SPATIOTEMPORAL  VARIATIONS  OF  

CLIMATE  COMFORT  IN  CHINA  DURING  1966-2016  

by 

Fei-Fei WU, Xiao-Hua YANG
*

, Zhen-Yao SHEN, and Ze-Ji YI 

State Key Laboratory of Water Environment Simulation, School of Environment,  

Beijing Normal University, Beijing, China 

Original scientific paper 
https://doi.org/10.2298/TSCI2004445W 

Climate comfort and its variability are of great importance to human comfort, 
health and well-being, as humans may suffer dire consequences when they are 
exposed to the environments with heat or cold stress. The climate comfort index 
represented the integrated effects of meteorological variables on the human 
thermal sensation. The annual and seasonal climate comfort index values were 
calculated based on the monthly data of the temperature, relative humidity, and 
wind speed from 591 stations in China between 1966 and 2016. Using the empir-
ical orthogonal function analysis, the dominant modes of climate comfort index 
variations were extracted by the first two modes, which accounted for more than 
50% of the total variance. The results showed that the annual and seasonal cli-
mate comfort index values displayed a latitudinal gradient, and increased to-
wards the south except for the Qinghai-Tibet Plateau. The most frequently per-
ceived thermal sensations were labeled as “cold”, “comfortable”, “cold” and 
“extremely cold” conditions from spring to winter, respectively. For annual and 
seasonal climate comfort index, the consistent increasing trend was detected in 
most regions of China in the first mode. The sensitive areas were mainly located 
in the central, eastern and southern China in winter, while in the northern and 
western China in summer. In the second mode, the fluctuations between upward 
and downward trends were observed. The sensitive areas were located in the cen-
tral China in summer, in the southwestern and southern China in autumn, and in 
the northern China in winter. This study provides the important information for 
the improvement of human settlement comfort. 
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Introduction 

Human comfort, health and well-being are influenced by weather conditions [1]. 
The comfort state of environment is a result of the multifaceted influence of many atmospher-
ic factors, such as the temperature, relative humidity, wind speed, and others [2, 3]. Global 
warming and significant increase of temperature have greatly changed the thermal comfort 
and humans' health in different regions [4]. In addition, the relative humidity and wind speed 
are important to human comfort conditions in the climatic view [5-7]. All of them significant-
ly affect the regional climate, microbial exposures, air quality, and human health [8, 9]. The 
climate comfort index (CCI) represents the integrated effect on sensation including all rele-
vant variables, which include the temperature, relative humidity, and wind speed.  
–––––––––––––– 
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A growing number of climate comfort studies have been conducted all over the 
world. For example, Terjun [10] adopted the comfort index and wind effect index to analyze 
the physiologic climates of the contentious United States. Xu et al. [7] analyzed the differ-
ences of the temperature and humidity and the vertical distribution of human comfort in Hei-
longjiang province in summer. Wang et al. [11] evaluated the non-linear relationship between 
extreme temperature and mortality in different temperature zones in 122 communities across 
China. However, few studies focused on the long trends and spatiotemporal variations of out-
door thermal comfort in China. China is considered to be one of the world’s most vulnerable 
countries to climate change. In addition, the variability of the climate comfort in China has 
complex spatial and temporal characteristics on account of the huge differences in the climatic 
background, climate driving forces and regional characteristics. Therefore, it is necessary to 
conduct the spatiotemporal analysis of climate comfort at multiple spatial and temporal scales 
based on the long-time data series.  

The objective of this study was to analyze the variability of climate comfort at annu-
al and seasonal scales in China, which will be of great significance for the human settlement 
improvement. Using the empirical orthogonal function (EOF) analysis, the dominant spatial 
variations and associated temporal trends of annual and seasonal CCI were extracted [12, 13]. 
To improve the physical interpretation of these patterns, the spatial patterns were interpolated 
using the inverse distance weighting (IDW) interpolation method, and the temporal series 
were analyzed with the 3-year moving average method. This study is not only helpful in the 
understanding the climate comfort response to global warming but also provides the important 
information for the improvement of human settlement comfort. 

Methods 

Algorithm of climate comfort index 

The formula of CCI is expressed as: 
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where climate comfort index is of human settlement, t – the temperature, r – the relative hu-
midity, and v – the wind speed. The CCI values are divided into 9 grades shown in tab. 1. 

Table 1. Classification of the CCI values 

Grade CCI range Sensation Physiological stress 

1 CCI ≤ 25 Extremely cold Extremely uncomfortable, exposed flesh freezes 

2 25 < CCI ≤ 38 Very cold Very uncomfortable 

3 38 < CCI ≤ 50 Cold Uncomfortable 

4 50 < CCI ≤ 55 Cool Relatively comfortable, slight cold stress 

5 55 < CCI ≤ 70 Comfortable No thermal stress 

6 70 < CCI ≤ 75 Warm Relatively comfortable 

7 75 < CCI ≤ 80 Hot Uncomfortable 

8 80 < CCI ≤ 85 Very hot Very uncomfortable 

9 CCI > 85 Torrid Extremely uncomfortable, exposed heat stroke 



 

Methodology 

The aim of EOF analysis is to find a small number of orthogonal base functions as 
well as associated coefficients to represent the original data [13, 14]. It has been widely used 
in the climate studies to analyze the dominant modes of variability [15-17]. It decomposes the 
observed variability into a set of EOF, which are invariant in time, and a set of time series 
called principal components (PC), which are invariant in space [18-21]. Steps to EOF analysis 
are:  
– Step 1. Calculate the annual and seasonal CCI values at 591 stations based on the month-

ly data of the temperature, relative humidity and wind speed using eq. (1). 
– Step 2. Establish the spatial matrix of annual and seasonal CCI between 1966 and 2016, 

which contains 51 observations from 591 stations. 
– Step 3. Define the normalized matrix X. 
– Step 4. Define the spatial covariance matrix C. 
– Step 5. Produce eigenvectors (EOF) and time series (PC) associated with EOF by the 

Eigen-analysis: 

 C EOF V EOF     (2) 

where each column in EOF represents eigenvectors of matrix C which describes a spatial 
pattern, the associated PC describing temporal variations by: 

 TPC EOF X   (3) 

– Step 6. Analyze the dominant spatial EOF and associated temporal PC. The EOF were in-
terpolated by the IDW interpolation and PC were analyzed by the 3-year moving average 
method. 

Case study 

The monthly dataset of the temperature, relative humidity and wind speed in China 
was provided by the National Climate Center, China Meteorological Administration. The da-
taset was available for 591 stations with 
continuous time series between 1966 and 
2016, fig. 1.  

The climate comfort has strong tem-
poral, intra-seasonal and inter-seasonal vari-
ability. This section first presented the spa-
tial pattern of the climate comfort condition 
during 1966-2016 at annual and seasonal 
scales. Next, the spatial and temporal char-
acteristics of climate comfort variations 
were analyzed using the EOF analysis. The 
leading EOF and associated PC were used to 
reflect the spatial and temporal characteris-
tics of climate comfort variations, which ex-
tracted most of the variance of original da-
taset. Table 2 shows the percentage of ex-
plained variance of the first ten EOF, which were ranked in a decreasing order. The first and 
second EOF extracted more than 50% of the total variance, while other EOF series explained 

 
Figure 1. Study area and weather stations in China 
(for color image see journal web site) 



 

less than 10% of the total variance. Schreck III and Semazzi [22] suggested that the 
eigenmodes represented noise beyond the second mode. Therefore, the first two EOF series 
were used to explain the dominant spatiotemporal variations of CCI in this study. 

Table 2. Variance contributions of the first ten leading EOF of CCI 

 1 2 3 4 5 6 7 8 9 10 

Year 60.1 8.0 6.5 3.5 2.5 2.3 1.9 1.6 1.4 1.0 

Spring 50.4 12.7 7.6 7.0 2.6 2.4 2.2 1.7 1.1 1.1 

Summer 44.7 10.3 7.5 5.5 4.1 2.9 2.6 2.1 1.7 1.5 

Autumn 54.3 9.9 5.9 4.3 3.1 2.9 2.2 1.9 1.6 1.4 

Winter 47.5 12.4 7.7 5.2 3.1 2.9 2.5 1.8 1.4 1.3 

The characteristics of CCI in China  

during 1966-2016 

The spatial distribution of annual and seasonal CCI across China was analyzed using 
the IDW interpolation method, shown in fig. 2. It was notable that the annual and seasonal CCI 
values showed a latitudinal gradient, and they generally increased towards the south except for 
the Qinghai-Tibet Plateau. This phenomenon was consistent with the spatial patterns of Univer-
sal Thermal Climate Index [16]. The annual CCI values fluctuated between 24.0 and 70.6, 
which indicated that the grades of physiological sensation ranged from the extremely cold con-
dition to the warm condition. For annual CCI, the most frequently perceived thermal sensation 
was the cold condition, which accounted for 46.4% of the total area. For seasonal CCI, the most 
frequently perceived thermal sensations were the cold, comfortable, cold and extremely cold 
conditions from spring to winter, respectively. The large percentage of the extremely cold stress 
(41.7%) and cold stress (34.9%) made the cold season the most uncomfortable.  

 
Figure 2. Spatial distribution of annual and seasonal CCI during 1966-2016 in China  

(for color image see journal web site) 



 

As shown in fig. 2(a), four dominant stress levels of annual CCI were identified across 
China. The uncomfortable areas with the cold stress were the largest, which accounted for 
46.4% of the total area of China. The regions featured with the no thermal stress condition were 
mainly located in the central, eastern and southern China. It accounted for 20.4% of the total ar-
ea of China. The climate in these regions was comfortable. Affected by the alpine plateau cli-
mate and the high altitude, the sensation in the Tibet Plateau was dominant with the cold and 
cool conditions. The climate was very uncomfortable in the northeastern China (i. e. Hei-
hongjiang and Jilin Province), as well as the northwestern China (i. e. the south of the Tibet 
Plateau). The spatial distribution of annual CCI was similar to that in spring and autumn, 
whereas it was distinctly different from that in summer and winter. The CCI values ranged from 
37 to over 75 in summer, while it ranged from  below 25 to 63 in winter. In the southeastern 
China, the climate was hot and uncomfortable to people affected by the subtropical and tropical 
monsoon climates [11]. By contrast, it was comfortable or relatively comfortable in winter.  

 
Figure 3. Spatial patterns of EOF1 of annual and seasonal CCI during 1966-2015 in China  
(for color image see journal web site) 

The first spatial-temporal pattern of climate comfort variations  

As shown in tab. 2, the explained variance of EOF1 of annual and seasonal CCI was 
more than 44%, which extracted most features of spatial variations in CCI. With almost all of 
the positive values in EOF1, the variation of climate comfort index followed the same trend in 
most regions of China. The loading value of 0.6 was used to distinguish the high correlated 
areas [23]. The regions with the high loading values (> 0.6) were observed in most regions 
except for the Tibet. The CCI in the Middle and lower Yangtze River was the most sensitive 
to climate change, as the loading values were more than 0.9. The sensitive areas were smaller 
in spring than those in autumn, though the spatial distribution of EOF1 was similar between 
spring and autumn. In contrast, the spatial distribution of sensitive areas in summer was great-
ly different from that in winter. As shown in fig. 3, the sensitive areas were mainly located in 
the central, eastern and southern China in winter, while they were observed in the northern 
and western China except for the southern and eastern China in summer.  



 

 
Figure 4. Temporal trends of PC1 of annual and seasonal CCI during 1966-2015 in China 

 
Figure 5. Spatial patterns of EOF2 of annual and seasonal CCI during 1966-2015 in China  
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The PC1 appeared significant upward trends from 1966 to 2016, which could be at-
tributed to the obvious increasing trends in temperature and declining trends in wind speed. In 
consideration with the average values and their corresponding grades shown in fig. 4, it was 
notable that the climate in some regions would become more comfortable, while in some re-
gions more uncomfortable. The climate in the northeastern and northwestern China was very 
uncomfortable, as the CCI values were between 25 and 38 and physiological sensation was 
very cold. The significant warming trends in these regions made the climate more comfortable 
to people. The increasing trends of CCI in the southern China in summer made the climate 
become hotter and people would feel more uncomfortable. In winter, CCI values decreased in 
the northwestern China (i. e. Tibet) with negative values of EOF1, which suggested that the 
climate in Tibet might become more cold and uncomfortable to people.  

The second spatial-temporal patterns of climate comfort variations  

The EOF2 displayed significantly asymmetric pattern. For annual CCI shown in fig. 
6(a), the EOF2 values appeared negative in the southwestern China (i. e. Tibet Plateau), while 
they were positive in other parts of China. The regions with positive values accounted for more 
than 2/3 of China. The most significant variations were observed in the northeastern China, 
where the EOF2 values were larger than 0.6. The distribution of sensitive areas differed greatly 
between seasons. In spring, EOF2 values ranged from –0.67 to 0.78. The most sensitive areas 
with high loading values (i. e. > 0.6 or < –0.6) were mainly located in the southwestern and 
northern China. In contrast, the sensitive areas in EOF1 were observed in other regions. The 
sensitive areas were located in the central China in summer, the southwestern and southern Chi-
na in autumn (i. e. Yunnan Province), and the northern China in winter, fig. 5.  

 
Figure 6. Temporal trends of PC2 annual and seasonal CCI during 1966-2015 in China 



 

The PC2 represented the temporal trends in the positive regions. The regions with 
positive values of EOF2 displayed a contrary variation trend compared with those with nega-
tive values of EOF2. As shown in fig. 6, an obvious fluctuation between upward and down-
ward trends was observed from 1966 to 2016. The main differences were the number of turn-
ing points. As shown in fig. 6(a), it was clear that the annual CCI values decreased between 
1965 and 1990 and increased during 1995 and 2016 for the regions with positive EOF2 values 
(i. e. northern China). In contrast, the annual CCI exhibited the opposite trends for the regions 
with negative EOF2 values (i. e. Tibet). It suggested that annual CCI in the northern China 
experienced an increasing-decreasing trend, though an overall increasing trend was found 
over China. 

Conclusion 

The spatial pattern and its variability of climate comfort index in China during 1966-
2016 were analyzed using the EOF analysis. The following conclusions can be drawn: the an-
nual and seasonal CCI values showed a latitudinal gradient, and they generally increased to-
wards the south except for the Qinghai-Tibet Plateau. In the first mode, the consistent increas-
ing trend was a distinct feature in most regions of China. Featured with the high loading val-
ues (> 0.9), the annual CCI was the most sensitive to climate change in the Middle and lower 
Yangtze River. For seasonal CCI, the sensitive areas were observed in the central, eastern and 
southern China in winter, while in the northern and western China in summer. In the second 
mode, the inverse variation trends were detected between the regions with positive loading 
values and the regions with negative loading values. The PC2 represented the fluctuations be-
tween upward and downward trends. The annual CCI in the northeastern China experienced a 
decreasing-increasing trend, though the overall increasing trend was observed across China, 
its mechanism can be explained by the two-scale thermodynamics [24], which will be done in 
a forthcoming paper.  
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