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A representative steady-state heat conduction problem in rectangular solids with 
uniformly distributed heat generation has been investigated analytically. An ana-
lytical solution is provided by solving a non-homogeneous PDE. A simple and ac-
curate model is proposed to predict the dimensionless shape factor parameter for 
the first time. The dimensionless shape factor is obtained in the light of the solution 
of Poisson equation with constant wall temperature boundary conditions. The ar-
ea-mean temperature is found by integration on the rectangular cross-section. The 
model is very concise and nice for quick real world approximations, and it provides 
acceptable accuracy for engineering practice.
Key words: heat conduction, rectangular solids, dimensionless shape factor, 

internal heat sources, method of eigenfunction expansions

Introduction

Heat conduction problems with internal energy sources are frequently encountered 
in various applications. For example, an electric current flowing through a body has the effect 
of an external energy addition (power input) to the internal portions of the body because of 
the dissipation due to electrical resistance. Since the dissipated energy is to be transferred out 
of the body by some heat transfer mechanism, the effect is said to be a heat source distributed 
throughout the body. Processes that produce similar effects are chemical reactions distributed 
throughout a body, nuclear reactions in a fissionable material exposed to a neutron flux, change 
of phase, and biological problems in fermentation. Some efforts have been made to solve an-
alytically heat conduction problems in engineering. Rogie et al. [1] analytically modeled heat 
conduction of printed wired board with heat generation. Xu and Wang [2] analytically studied 
the temperature fields in a slab for laser heating. Forslund et al. [3] analytically modeled the 
moving Gaussian heat flux problem appeared in powder bed fusion application. Franca and Or-
lande [4] carried out an investigation on heat conduction in a transistor employing a Bayesian 
Approach. Shen et al. [5] performed an investigation on the effect of non-condensable gas on 
heat conduction in pressure steam sterilization.

In general, exact solutions of common and simple physical models are utilized to 
validate the accuracy of numerical solutions in fluid mechanics and heat transfer. Significant 
contributions have been made by Haji-Sheikh et al. [6], Aviles-Ramos et al. [7], Beck et al. 
[8, 9], and Beck and Cole [10] for multidimensional heat conduction problems. Beck et al. [9] 
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discussed convergence problems for heat conduction in rectangular plates. Wang [11] presented 
an analytical investigation on the steady heat-conduction problem via local fractional deriva-
tive. Laraqi et al. [12] pointed out that heat conduction in solids subjected to non-homogenous 
boundary conditions are difficult to solve by using the classical methods such as integral trans-
forms or separation of variables (SOV). Gao and Yang [13] proposed the local fractional Euler’s 
method to consider the steady heat-conduction problem. EI Maakoul et al. [14] pointed out that 
the resistance and quadruple concepts may be utilized to work out heat conduction problems.

Deng and Ge [15] considered a generalized local fractional 2-D Helmholtz equation 
in steady heat transfer process. Yilmazer and Kocar [16] solved analytically heat conduction 
equation for an eccentric spherical annulus. Some efforts have been made to solve differential 
equations in fluid-flow and heat conduction problems [17-22]. Tian [23] presented a symmetry 
analysis of non-linear heat conduction equations. Harfash [24] focused on penetrative convec-
tion porous media with internal heat generation. Bennett and Hohmann [25] highlighted the 
shear stress have a significant mitigating effect on heat exchanger fouling. Monsivais et al. [26] 
focused on the conjugate heat transfer problem in a thin micro-channel. Li et al. [27] performed 
an investigation on the optimization of heat transmission paths. A heat transmission problem in 
the human head was considered by Mohsenyzadeh et al. [28]. Maitama and Zhao [29] proposed 
a semi-analytic method for solving non-homogeneous heat transmission problems. Wang et al. 
[30] presented an optimization study of the heat source identification. 

It is difficult and time-consuming to obtain analytical solutions of heat conduction 
equation. The method of SOV is commonly employed to find exact solutions of heat transmis-
sion problems. Though the SOV is a powerful approach, it may not acquire exact solutions at 
non-homogeneous boundary conditions. The standard SOV procedure for steady heat trans-
mission is the means recommended in heat transmission textbooks. For instance, Carslaw and 
Jaeger [31], Arpaci [32], Ozisik [33], Schneider [34], Bejan [35], and Kakac et al. [36] point out 
that the SOV is the appropriate way to work out heat transmission problems. However, the SOV 
often produces analytical solutions having low convergence. The problem was clearly identified 
in [8, 37, 38]. Hayat et al. [39] solved the convergence of the temperature equations employing 
the homotopy technique. The convergence of the SOV solutions has not been detailedly dis-
cussed in heat conduction textbooks published over the last six decades. Therefore, solving the 
area-mean temperature of an object by integration is extremely difficult.

Selecting the proper form of solutions can reduce significantly the number of terms in 
the summations. This paper deals with a typical 2-D heat conduction problem in the rectangle 
with consistently distributed heat generation. The series solution having rapid convergence is 
obtained by solving a non-homogeneous PDE utilizing the method of eigenfunction expan-
sions. A model is first proposed for precise prediction of a dimensionless shape factor parame-
ter. The conduction shape factor which is composed of area-average temperature difference, in-
ternal heat generation, thermal conductivity of the solid media, and a representative dimension 
of the cross-section. The developed solution can be easily applied to engineering practice and 
verification of the accuracy of numerical solutions.

Theoretical analysis

In this work, it is considered that typical 2-D steady-state heat conduction problems 
with consistently distributed heat generation which are idealizations of more involved problems 
frequently encountered in practice. For instance, thermal management system controls lithium 
batteries to work in a suitable temperature range for electric vehicle application.
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The steady heat transmission in the rectangular solid media 2a × 2b × L with uniform 
surface temperature Ts is shown in fig. 1. The surface of the solid media is cooled by external 
systems so that its temperature is nearly constant. The power of the heat source in the solid is q̇ 
and the thermal conductivity of the solid media is k. It is assumed that the dimension of the rect-
angular solid in the z-direction is sufficiently large so that heat flow may be considered as 2-D.

We are interested in the temperature distribution T(x, y) of the rectangle, in order to 
simplify the solution we introduce the temperature difference expressed as θ = T(x, y) − Ts. The 
governing equation of heat transmission in this solid with heat generation can be expressed:
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where k represents the thermal conductivity of the rectangular solid media and q̇ – the uniform-
ly distributed volumetric heat generation. Due to symmetry, the boundary conditions can be 
written:
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The transformed Poisson equation and the corresponding boundary conditions may 
be expressed:
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where ε = b/a, the ratio of width to height of the rectangular section:

Figure 1. Heat conduction in a rectangular solid
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Employing the method of eigenfunction expansions, it is assumed that the solution of 
the temperature distribution is:
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where δn is a cluster of eigenvalues, Xn – the cluster of functions of x/a, and cos(δn y/b) are the 
cluster of eigenfunctions. The temperature distribution satisfies the boundary condition, eq. (9). 
Further, substituting the solution into the boundary condition, eq. (7), the eigenvalues δn are 
determined:
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2n n nδ
π

= − =  (12)

Then, the temperature distribution is obtained:
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The method of SOV is generally used to determine analytical solutions of heat conduc-
tion problems, however, the SOV often produces analytical solutions having low convergence 
[8]. To obtain the average temperature of a body, it is critical and desired to utilize a method of 
evaluation with fast convergence. However, the issue of the convergence of analytical solutions 
has not been discussed in advanced heat conduction books published over the last six decades. 
Hence, further solving for the area-mean temperature by integration is extremely difficult. As 
eq. (13) consists of a rapidly convergent series, the value of any point in the cross-section can 
be easily and quickly determined using this series solution.

The average temperature rise of the rectangular solid is obtained by integration of  
eq. (13) for the rectangular cross-section:
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where θm is the area-mean temperature variation. Take a rectangular solid with ε = 1 as an 
example, the variation of the values of the series solution with the number of terms is demon-
strated in fig. 2. In details, q̇, k are constants, here taken as unity. The convergence analysis of 
the developed solution demonstrates that the single term solution gives acceptable accuracy for 
engineering practice.

Further, absolute values of the relative errors δ in the average temperature rise of rect-
angular solids with various aspect ratios (0.1 ≤ ε ≤ 1) for the single term solution and two terms 
solution are showed in fig. 3. In details, the largest error compared to the convergence value oc-
curs when the aspect ratio is equal to 1, and this error of the single term solution is less than 0.7%. 
When higher accuracy is required, the two terms approximation is accurate enough because of the 
fast convergence performance (the largest difference is in this case less than 0.05%) [40]. 
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Figure 2. The values of the developed  
solution of the average temperature  
rise vs. the number of terms in the series

Figure 3. Absolute values of the relative  
errors in the average temperature  
rise vs. the number of terms in the series

Thus, the two terms approximation is recommended:
2

5

1 64 1 3= tanh tanh
3 2 243 2m

qb
k

εθ
ε ε

  π π    − +     π      



(15)

Since eq. (15) is based on theoretical analysis, it has greater accuracy compared to 
those solutions relying on the curve fitting method. In addition, the solution of the average 
temperature provides a good insight into the underlying heat conduction mechanism and it can 
be recast:
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For steady heat transmission problems in solid materials, it is often handled on the 
basis of conduction shape factor parameter. In numerous cases, heat conduction problems can 
be quite rapid worked out by employing existing solutions to the heat conduction equation. 
However, these available solutions are presented in terms of a dimensional shape factor in heat 
and mass transfer textbooks [41] and are not easy to utilize. 

It is well known that engineering practice is based on the combination of theoretical 
analysis and experimental research, especially for heat transmission which is heavily dependent 
on experimental means. In general, so far researchers and engineers followed the standard prac-
tice of providing practical results on a simple diagram in terms of dimensionless groups which 
are quite convenient to use. The graphic description of these existing results avoided a lot of 
difficulties related to dealing with engineering problems on the slide rule. 
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For complex engineering problems, it is important and necessary to introduce a useful 
dimensionless group and describe existing solutions in dimensionless form. The determination 
of the proper dimensionless parameters provides a strong means for simplifying and solving 
engineering problems. Moreover, the shape factor of heat transmission problems with internal 
heat generation is rarely reported. Therefore, using scale analysis of the heat conduction equa-
tion, a new dimensionless shape factor parameter of interest is proposed herein and defined:

m

s

k
q
θ

Θ =


(17)

where q ̄s is the average surface heat flux and 𝓁 – the arbitrary scaling parameter that is related 
to the length scales of the cross-section. This may be associated with the temperature gradient 
by means of the integration for the perimeter, P, of the domain, and defined:
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where ∂/∂n is the directional derivative normal to the perimeter and ds – the arc length of the 
perimeter. 

The average surface heat flux is given:

=s
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The ratio of area to perimeter can be expressed in terms of b and aspect ratio:

=
1
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When the scaling parameter is selected as 𝓁 = Dh, the dimensionless shape factor 
becomes:
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For rectangular solids, we can obtain the dimensionless shape factor from the previ-
ous equation. Substituting eqs. (16) and (20) into eq. (19), the average surface heat flux can be 
expressed:
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This relation confirms that the average surface heat flux scales as kθm/Dh. Hence, the 
shape factor for the rectangle with internal heat source can be written:
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The results of dimensionless shape factor for the rectangle are obtained from eq. (23) 
and presented in fig. 4 for the aspect ratio range from 0.01-1.

For rectangular solids, the model of the dimensionless shape factor, Θ, is developed 
by means of a least-square fit of the results calculated from eq. (23) and expressed:

2 3( ) = 0.0829 + 0.1256 0.0707 0.0026Θ ε ε ε ε− + (24)
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The conduction shape factor, Θ, is only 
a function of the aspect ratio and the model is 
very concise and nice for quick real world ap-
proximations, and it provides acceptable accu-
racy for engineering practice.

We can observe from fig. 4 that the shape 
factor curve is rather steep at low aspect ratios 
but flattens out starting with an aspect ratio 
value of about 0.8. The increase in shape fac-
tor with the aspect ratio is not so pronounced at 
high aspect ratios. It is well understood that heat 
conduction is less influenced by the aspect ratio 
of the geometry as the aspect ratio increases.

Results and discussion

The reliability and performance of electronic chips and batteries are significantly af-
fected by their operating temperature [42-44]. Determining accurately of the temperature dis-
tribution and analyzing the influence of aspect ratio on temperature distribution are critically 
paramount for designing an effective cooling scheme of the thermal management for electronic 
applications and electric vehicle applications. We investigated analytically steady-state heat 
conduction with uniformly distributed volumetric heat sources in long rectangular solids. Tem-
perature distributions from eq. (13) for three typical aspect ratios 1, 0.5, and 0.2 are presented 
in this section.

Temperature distribution from eq. (13) for ε = 1 is shown in fig. 5. A crucial fea-
ture of the solution that should be captured is axial symmetry and diagonal symmetry duo to  
θ = 0 at all boundaries of the square cross-section. Figure 5(a) demonstrates the axial and di-
agonal symmetries of the temperature distribution. Another significant feature of the solution 
that should be captured is that the temperature gradient gradually increases from the origin to 
edges of the rectangle. This trend is clearly observed in fig. 5, and fig. 5(b) demonstrates the 
3-D structure of the temperature distribution which is a parabolic profile with the maximum 
temperature in the core region and minimum temperature at the walls.
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Figure 5. Temperature distribution from eq. (13) for ε = 1; (a) computational domain and  
(b) the 3-D structure of the temperature distribution

Figures 6 and 7 demonstrate the computed results of the temperature distribution on 
the cross-section using eq. (13) for aspect ratios 0.5 and 0.2, respectively. The temperature dis-

Figure 4. Dimensionless shape factor as a 
function of aspect ratio



Duan, Z., et al.: Heat Conduction in Rectangular Solids with Internal Heat ... 
4780 THERMAL SCIENCE: Year 2021, Vol. 25, No. 6B, pp. 4773-4782

tribution corresponding to a value of θ may be obtained, and components of the heat flux can be 
obtained by utilizing eq. (13) with Fourier’s law. The axial symmetry of the obtained results can 
be observed in figs. 6(a) and 7(a). The temperature distribution is symmetric about x = 0 and y 
= 0, with ∂T/∂x = 0 at x = 0 and ∂T/∂y = 0 at y = 0 in detail. Hence, by Fourier’s law, we could 
know the symmetry planes at x = 0 and y = 0 are adiabatic and therefore, are heat flow lines.

An interesting variation trend of the temperature gradient can be found that it increas-
es from the origin to edges of the rectangle, and larger temperature gradient appears near the 
walls. As can be seen from figs. 5-7, compared with numerical methods, it is a great advantage 
that more accurate values can be obtained from eq. (13) at any position of the rectangle, espe-
cially near the walls and at the corners. Compared with numerical means, the developed solu-
tion is a more appropriate choice because its cost is negligible. In case of numerical solution, 
the computational grid should be refined near the region of high temperature gradients in order 
to achieve grid independency. This is not required when the present analytical approach is used. 
In addition, it is visually observed for all figures that the maximum temperature occurs in the 
core region and the minimum temperature at the walls. Although not shown here, similar trends 
are also observed for other aspect ratios.

Conclusion

This paper provides an exact analytical solution for steady-state heat transmission 
with uniformly distributed volumetric heat sources in long rectangular solids. A dimensionless 
shape factor parameter was introduced and its solution was first obtained. This factor depends 
on the area-average temperature difference, the average wall heat flux, the thermal conductivity 
and a characteristic scaling parameter of the cross-section. The analytical solution provides 
highly precise values of the temperature distribution, and the area-average temperature dif-
ference is found by integration on the rectangular cross-section. The obtained solution can be 
easily applied to engineering practice and verification of numerical solutions. 
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Figure 7. Temperature distribution from eq. (13) for ε = 0.2
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Nomenclature

A – cross-sectional area, [m2]
a  – major semi-axis of rectangle, [m]
b  – minor semi-axis of rectangle, [m]
Dh  – hydraulic diameter (= 4A/P), [m]
k  – thermal conductivity, [Wm–1K–1]
L  – length of solid, [m]
P  – perimeter, [m]
q̇  – internal volumetric heat sources, [Wm–3]
qs, q̄ s  – heat flux and mean surface heat flux, 

[Wm–2]

T, Ts  – temperature and surface temperature, [K]
Xn  – function of x/a, [–]
x, y, z  – Cartesian co-ordinates, [m]

Greek symbols

δn  – eigenvalues, [–] 
ε  – aspect ratio (= b/a), [–]
Θ – dimensionless shape factor, [–]
θ  – temperature rise [= T (x, y) − Ts], [K]
θm  – area-average temperature rise, [K]
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