INVESTIGATION ON ASH FOULING FORMATION OF INDUCED FAN BLADE AND HEAT EXCHANGER SURFACE IN A 1000 MW COAL-FIRED POWER PLANT

He-xin LIU a, Jia-fan XIAO a, Hou-zhang TAN a*, Yi-bin WANG a, Fu-xin YANG a

a MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi, 710049, China

*Corresponding author: hzt@mail.xjtu.edu.cn

The control of fouling deposition on the main equipment has always been an important issue concerned by scientific research and industrial application. However, severe fouling deposits on the induced fan blade and the low-temperature economiser were found in a 1000MW coal-fired power plant with ultra-low emission. The deposit samples were collected and analyzed through X-ray diffraction spectrometer, X-ray fluorescence, elemental analyser and scanning electron microscope with energy dispersive spectrometers. The result shows that the deposits are mainly composed of tschermigite ((NH₄)Al(SO₄)₂•12H₂O), letovicite ((NH₄)₃H(SO₄)₂), calcium sulphate (CaSO₄) and quartz (SiO₂). The ammonium sulfate is the main component of the fouling deposits. It acts as an adhesive and makes an important contribution to the deposit. The analysis shows that the ammonia slip from denitrification system and the unreasonable temperature setting are the main reasons for fouling deposition. It is suggested that the high concentration of ammonium slip at denitrification system and the rapid condensation of the sulphuric acid mist at heat exchanger should be paid more attention in coal-fire power plants.

Key words: fouling deposition, ammonium sulfate, coal-fired power plant, induced fan blade, low-temperature economiser

1. Introduction

With the improvement of ecological environment awareness, the impacts of pollutant emission from coal-fired power plants on frequent haze weather have gradually attracted attention [1, 2]. Currently, China has fully carried out strict ultra-low emission standard for coal-fired power plants, which specifies particulate matter (PM), sulfur dioxide (SO₂) and nitrogen oxides (NOₓ) shall not exceed 5, 35 and 50 mg/Nm³ [3]. Correspondingly, the technologies that achieve the ultra-low emission target through a series of processes or devices are called ultra-low emission technologies. In terms of PM removal, there are many ways such as the low-low temperature electrostatic precipitator (LLT-ESP) [4], wet electrostatic precipitator (WESP) [5] and high-frequency power supply (HFPS) [6]. For the control of SO₂, the more effective technologies include the single tower integrated desulphurization and dust removal purification (SPC-3D) [7], double absorption tower and two circulations per tower [8]. Besides, the main emission reduction technologies for NOₓ consist of low NOₓ combustion [9], selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) [10].

Although the ultra-low emission technologies are effective ways to control the main air pollutants, there are still many new problems existing in coal-fired units during technical reconstruction. For
example, the gaseous reductants, ammonia or urea solution, which are injected in SCR, react chemically with the NO\textsubscript{x} in the catalyst layers, but the vanadium-containing catalyst can convert about 1% of SO\textsubscript{2} into SO\textsubscript{3} in this process [11]. Then, some of the gaseous reductants will directly pass through the SCR system, and react with sulphuric acid downstream to produce ammonium sulphate or bisulphate (ABS) [12]. Compared with ammonium sulphate that exists as dry solid powders within the operating temperature range of the downstream air preheater, ABS presents sticky and easily induces serious acidic deposit on the metal elements of the air preheater. Jimenez [13] found that ABS begins to deposit at approximately 157 °C. Menasha et al. [14] showed that the formation temperature of ABS is 227-247 °C for the typical flue gas with ammonia of 2-10 ppm and sulphuric acid of 5-45 ppm. Chetan et al. [15] observed that ammonium sulfate becomes the main component in the flue gas when the molar ratio of ammonia to SO\textsubscript{3} is greater than 2. It can be summarized that the formation of ABS in the flue gas is affected by three main factors consisting of temperature, concentration and molar ratio of ammonia to SO\textsubscript{3}. Furthermore, the concentration product of ammonia and sulphur trioxide can also reflect the formation rate of ABS, which means the low ammonia slip can also easily form ABS deposits when the concentration of SO\textsubscript{3} is high enough. Thus, high conversion rate of SO\textsubscript{2} to SO\textsubscript{3} and ammonia slip from SCR are one of important causes of serious blockage of ABS. In addition, in order to remove PM and sulphur more efficiently, LLT-ESP technology has been widely used in the Chinese power plants with ultra-low emission modification, which maintains the flue gas temperature of about 85-95 °C before ESP through a heat exchanger [16]. The SO\textsubscript{3} in the flue gas can react with water vapor to form the sulphuric acid mist. These mist then stick to the surface of PM and improve the removal and collection of SO\textsubscript{3} by ESP [17]. Although the sulphuric acid mist can be removed under design conditions, it may fail under actual conditions and then severe corrosion and deposition will occur at the downstream of the LLT-ESP because of low temperature. Therefore, in order to address the problems in the ultra-low emission modification, it is of scientific and practical significance to conduct study on the ash fouling formation of coal-fired unit equipment to provide more reasonable suggestions.

In this work, serious fouling deposits were investigated on the blade of the induced draft fan and the surface of the two-stage low-temperature economiser (LTE) in a 1000MW coal-fired power plant. The deposition and fouling were firstly sampled when the coal-fired unit was shutdown. The chemical compositions and micromorphologies of these samples were characterized through X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscope with energy dispersive spectrometers (SEM-EDS). Then the performance of upstream equipment and the formation of the fouling were then analyzed and evaluated. Finally, based on the above analysis, a formation mechanism of ash fouling was proposed for further understanding ash fouling problems in coal-fired power plants.

2. Field parameters and sampling location

The essential information of the coal-fired power plants will be presented, including system composition, operating temperature, coal properties and ash compositions. Then, the thermodynamic model of the acid dew point for coal-fired flue gas will be provided, which can be used to evaluate the change of the acid dew point temperature with coal properties and further analyze the formation mechanism of fouling deposition.
2.1. Coal-fired power plant

The research object was the #1 unit of a 1000MW ultra-supercritical coal-fired power plant with ultra-low emission, which was located in Shouguang City, Shandong Province. As shown in Fig.1, a three-layer SCR with V$_2$O$_5$-TiO$_2$ catalyst was equipped and the design efficiency of denitration reached 87%. The first two layers of the catalyst were enable while the last one was on standby. A two-stage LTE was used for recovering latent heat of the flue gas and improving the removal efficiency of ESP and WESP. The first stage LTE was installed at the inlet of the ESP and the second LTE was located at the inlet of the WFGD. The induced draft fan was installed at the outlet of the ESP to supply the driving force for flue gas flow and balance the system resistance. The removal efficiency of PM for the ESP was higher than 99%. The distributed control system (DCS) showed that the concentration of PM at the outlet of ESP was about 5 mg/m3 with small fluctuations, and the concentration of SO$_2$ was about 1200 mg/m3 at full load.

![Figure 1. Schematic diagrams of the coal-fired power plant and the sampling equipment](image)

According to the data of DCS, the boiler load was distributed between 50-100%. When the boiler was at full capacity, the flue gas temperature of the outlet for the first-stage LTE and the second-stage LTE was ranged within 103-121 °C and 98-101 °C, respectively. While the boiler was at 50% capacity, the temperature ranges were 100-111 °C and 95-100 °C for the first-stage and the second-stage LTE, respectively. Meanwhile, it could be found that the temperature drop of the second-stage LTE would experience 15-20 °C when the temperature of the first-stage LTE decreased 2-5 °C.

2.2. Coal properties and ash compositions

The typical properties and the ash compositions of the coal are presented in Tab.1 and Tab.2. It can be seen that the sulphur contents in design coal and checked coal are both below than 1%, but severe fouling deposits are found at the downstream equipment of ESP, which indicates that ammonia escape in SCR systems may have been existing.

![Table 1. Typical properties of design coal and checked coal](table)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Proximate analysis/%</th>
<th>Element analysis/%</th>
<th>LHV/MJ·kg$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_t</td>
<td>M_{ad}</td>
<td>A_{ar}</td>
</tr>
<tr>
<td>Design coal</td>
<td>18.50</td>
<td>10.66</td>
<td>10.24</td>
</tr>
<tr>
<td>Checked coal</td>
<td>17.90</td>
<td>9.33</td>
<td>15.10</td>
</tr>
</tbody>
</table>

Note: The subscripts t and ad represent the total and the air dried basis, respectively; the subscript ar and daf represent the air received basis and the dry ash-free basis, respectively.
Table 2. Ash compositions of design coal and checked coal (wt. %)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Fe₂O₃</th>
<th>Al₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>SO₃</th>
<th>K₂O</th>
<th>Na₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design coal</td>
<td>11.52</td>
<td>18.38</td>
<td>12.75</td>
<td>1.60</td>
<td>46.12</td>
<td>0.81</td>
<td>6.33</td>
<td>1.31</td>
<td>0.66</td>
</tr>
<tr>
<td>Checked coal</td>
<td>8.81</td>
<td>18.87</td>
<td>8.3</td>
<td>1.51</td>
<td>56.06</td>
<td>1.04</td>
<td>2.75</td>
<td>1.36</td>
<td>0.74</td>
</tr>
</tbody>
</table>

2.3. Flue gas acid dew point

According to the coal properties and ash compositions, the acid dew point of the flue gas can be estimated using thermodynamic method, which is given as follows:

\[t_1 = t_s + \frac{\beta^3 S_{at,zs}}{1.05 S_{at,zs}} \]

(1)

\[S_{at,zs} = 1000 \times \frac{S_{ar}}{Q_{net}} \]

(2)

\[A_{at,zs} = 1000 \times \frac{A_{ar}}{Q_{net}} \]

(3)

where \(t_1 \) is the acid dew point, and \(t_s \) is the water dew point. \(\beta \) is a parameter related to excess air coefficient, and is generally set to 1.25. \(S_{at,zs} \) and \(A_{at,zs} \) are the corrected sulphur content and the corrected ash content, respectively. The influence of fly ash content on acid dew point is corrected by \(\alpha_{fh} \), which can be set in the range of 0.8-0.9.

The coal properties and the acid dew points in the past six months are shown in Fig.2. The calculation result shows that the authentic acid dew points were between 85-100 °C. The result was lower than the inlet temperature of the LLT-ESP, which indicated that the LLT-ESP was not working under optimum conditions.

Figure 2. The coal properties from January 1st to May 1st
3. Ash sampling and analytical methods

During the ten-month operation period, the pollutant emissions of the boiler unit were lower than the ultra-low emission limits. However, when it performing scheduling outages, severe ash deposits and fouling were found on the surfaces of the induced draft fan blades and the second-stage LTE tube walls. The surfaces of the fan blade were covered uniformly by rigid fouling. The inlet of the second-stage LTE was blocked seriously by hard deposits while the outlet of the heat exchanger was crumbly deposits and dust. In order to further analyze the formation mechanism of the fouling, some ash deposits were sampled from the three locations. The sampling equipment is shown in Fig.1, and the actual situation of the fouling deposits are shown in Fig.3 and Fig.4. The samples from the induced fan blade, the inlet of the second-stage LTE and the outlet of the second-stage LTE are named sample 1, 2 and 3 in this paper, respectively.

![Sampling locations](image1)

Figure 3. Fouling deposits (left) and ash morphology (right) on the fan blade

![Sampling locations](image2)

Figure 4. Fouling deposits on the inlet (left) and outlet (right) of the second-stage LTE

The collected samples were first ground in an agate mortar for 30 mins and passed through a 200-mesh sieve to obtain fine powder samples with uniform particle sizes. These fine powder samples were then characterized and analyzed by XRD (model Bruker D8 ADVANCE), XRF (model Bruker S8 Tiger) and SEM-EDS (model HITACHI SU3500). The main elements consisting of C, H, N, and S in the fine powder samples were measured through the elemental analyzer (model Germany vaeeio MACRO cube),
while the remaining elements in the samples were analyzed through XRF. The XRD with the MDI jade6.5 software was used to identify the crystal phase composition in the samples. Furthermore, the micromorphologies of the samples were observed through the SEM-EDS.

4. Results and discussion

In the following passage, the elemental contents of the fouling deposits were first analyzed, and then the reactions of the mineral compositions were studied. Additionally, the micromorphologies were further observed and identified. Finally, based on the above results, the formation mechanisms of the fouling deposits on the induced fan blade and heat exchanger surface were concluded and illustrated.

4.1. Elemental analysis and migration

The elemental distributions of the three samples are shown in Tab.3, and the change of these elements are illustrated in Fig.5. It can be seen that the total percentage of the three elements, N, O and S, for the three samples, are 72.9%, 65.3% and 58.3%, respectively. The high percentages indicate that ammonium sulfate minerals are rich in the three samples, and the downward trend also show that the ammonium sulfate minerals are the most serious in the induced fan blade along the flue gas flow. According to Fig.3 and Fig.4, the actual situations of fouling deposits also correspond to this change. In addition, Tab.1 and Tab.2 show that there is less sulfur in the coal and the ash. Therefore, it can be speculated that the ammonia slip from SCR, especially in local high concentrations, can cause enrichment of sulfur by homogeneous or heterogeneous chemical reactions.

<table>
<thead>
<tr>
<th>Elements (wt.%)</th>
<th>Sample 1 (induced fan blade)</th>
<th>Sample 2 (inlet of LTE)</th>
<th>Sample 3 (outlet of LTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>51.4</td>
<td>51.2</td>
<td>47.7</td>
</tr>
<tr>
<td>S</td>
<td>16.5</td>
<td>10.0</td>
<td>7.9</td>
</tr>
<tr>
<td>N</td>
<td>5.0</td>
<td>4.1</td>
<td>2.7</td>
</tr>
<tr>
<td>H</td>
<td>4.0</td>
<td>3.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Si</td>
<td>8.7</td>
<td>12.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Al</td>
<td>6.2</td>
<td>8.3</td>
<td>8.9</td>
</tr>
<tr>
<td>Ca</td>
<td>2.9</td>
<td>4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Fe</td>
<td>2.3</td>
<td>3.2</td>
<td>6.7</td>
</tr>
<tr>
<td>K</td>
<td>0.5</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Others</td>
<td>2.5</td>
<td>2.5</td>
<td>4.1</td>
</tr>
</tbody>
</table>
As shown in Fig. 5, the mass percentages of O, S, N and H decrease with the flow of the flue gas, and the elements in the induced fan blade are the highest. At the downstream of the LLT-ESP, the flue gas temperature was fluctuated around the acid dew point of 98 °C. Under the situation of low temperature and low particle concentration, it’s easier for the coal-fired unit using SCR system to generate ammonium sulphate minerals by chemical reactions. Therefore, it can be indentified that the ammonium sulphate mineral are deposited on the surface of the induced fan blade, and it may explain why the fouling deposits on the blade are harder than that in the second-stage LTE. Furthermore, it can be seen that the mass percentages of Si, Al, Ca and K are increasing along the direction of flue gas flow. As non-volatile elements, these elements are mainly concentrated in the ash particles after coal burning in the boiler. As a whole, their relative contents remain essentially unchanged in the flue gas. Thus, the increase of the four elements can be attributed to the decrease in O, S, N and H. In addition, the mass percentages of Fe in the second-stage LTE are higher than that in the induced fan blade, whose reason is mainly the different degree of corrosion as shown in Fig.3 and Fig.4.

4.2. Mineral composition and reaction

Some significant differences were observed in the crystalline phase composition between the ash samples of the induced fan blade and those of the second-stage LTE through XRD, as illustrated in Fig.6. The main crystalline phases in the sample of the induced fan blade included tschermigite ((NH₄)₂Al(SO₄)₂·12H₂O), godovikovite ((NH₄)Al(SO₄)₂), letovicite ((NH₄)H(SO₄)), calcium sulphate (CaSO₄), calcium sulphate dehydrate (CaSO₄·2H₂O) and quartz (SiO₂). While the samples from the second-stage LTE included tschermigite ((NH₄)₂Al(SO₄)₂·12H₂O), ferric sulphate (Fe₂(SO₄)₃), calcium sulphate (CaSO₄) and quartz (SiO₂). It can be seen that the tschermigite exists in all of the three samples. Tschermigite is a mineral form of ammonium alum and water soluble, whose melting point is about 93.5 °C. In industrial application, ammonium sulphate is added to the concentrated solution of aluminium sulphate, and the ammonium alum will be prepared after dissolve, filtering, concentrating, cooling and separating crystal. In addition, ammonium sulphate and alumina can also react chemically to produce ammonium alum directly at high temperature [18]. According to the above properties of the ammonium sulphate mineral, it can be speculated that the tschermigite found in the ash samples can be from SCR and downstream LLT-ESP. Meanwhile, the temperature of the flue gas may be lower than the acid dew point due to fluctuation or local heterogeneity. Therefore, the sulphuric acid mist condensed in the flue
gas might react with the alumina in the ash particles to produce aluminium sulphater which is hygroscopic. Meanwhile, the ammonium escaped from SCR is also easier to react with the sulphuric acid mist and form ammonium sulphate. Finally, the tschermigite and the godovikovite are produced through the action among aluminium sulphater, ammonium sulphate and water. Moreover, high temperature can accelerate the reactions between ammonium sulphate and alumina, and the related chemical equations are listed as followed:

$$2\text{NH}_3 + \text{SO}_3 + \text{H}_2\text{O} \rightarrow (\text{NH}_4)_2\text{SO}_4$$ \hspace{1cm} (4)

$$\text{NH}_3 + \text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{NH}_4\text{HSO}_4$$ \hspace{1cm} (5)

$$4(\text{NH}_4)_2\text{SO}_4 + \text{Al}_2\text{O}_3 \rightarrow 2(\text{NH}_4)\text{Al}(\text{SO}_4)_2 + 6\text{NH}_3 + 3\text{H}_2\text{O}$$ \hspace{1cm} (6)

$$(\text{NH}_4)_2\text{SO}_4 + \text{Al}_2(\text{SO}_4)_3 + 12\text{H}_2\text{O} \rightarrow 2(\text{NH}_4)\text{Al}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$$ \hspace{1cm} (7)

Furthermore, the letovicite presented in the ash samples is an ammonia sulphate mineral. A study on the simultaneous measurement of gaseous ammonia and particulate ammonium found that the letovicite will be generated when the molar ratio of the ammonia and sulphuric acid is approximately equal to 1.5 [19]. The peaks of letovicite observed in the ash sample of the induced fan blade show that the stoichiometry of the ammonia and sulphuric acid is close to 1.5, and $(\text{NH}_4)_3\text{H(SO}_4)_2$ is the main product. In addition, the XRD patterns show that calcium sulphate is also one of the main components for the ash samples, which can be attributed to the high proportion of calcium oxide in the coal as shown in Tab.2. Another notable component is ferric sulphate. Mounts of ferric sulphate were observed in the ash samples of the second-stage LTE. One part of the iron element may come from the coal, and the rest may be belonged to the metal wall of the second-stage LTE because of the severe corrosion by sulphuric acid, as shown in Fig.3.

![Figure 6. XRD patterns of the three fouling deposite samples](image)

- 1 - $(\text{NH}_4)_2\text{Al(SO}_4)_2 \cdot 12\text{H}_2\text{O}$
- 2 - CaSO_4
- 3 - K_2SO_4
- 4 - $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$
- 5 - SiO_2
- 6 - $(\text{NH}_4)_3\text{H(SO}_4)_2$
- 7 - $(\text{NH}_4)\text{Al(SO}_4)_2$
- 8 - $\text{Fe}_2(\text{SO}_4)_3$
4.3. Microscopic observation

It can be seen from Fig.3 that the fouling deposit covering evenly on the surface of the blade is about 10mm thick and its hardness is close to the setting cement. As shown in the left of Fig.7, the micromorphology of the deposit sample mainly consists of irregular flocculent particles and spherical particles, and these particles are adhering tightly. Two areas and two spots in Fig.7 were selected to identify the difference in chemical composition. The mass percentages of the elements detected are listed in Tab.4. There were approximately 27.2% and 26.9% of sulphur in ash deposits found in areas A and B, respectively. The result indicates that sulphate is widely distributed on the samples. Meanwhile, there were about 26.31% and 18.03% of silicon appearing in spots C and D, respectively. And the high concentration of aluminium, calcium, potassium and sodium were found in the samples, which means that the spherical particles may be the fly ash particles. Compared with the data in Tab.3, the content of the sulphur detected by EDS was larger, which indicated that the sulphate may cover the fly ash particles and result in higher concentration of sulphur on the surface of the samples. Therefore, the micromorphology of the induced fan blade indicates that the sulphate adhere firstly to the surface of particles and then form a sticky whole.

As shown in Fig.3, the deposits on the fineed tubes of the second-stage LTE are loose and fragile. It is clear that the fouling deposits can be divided into three layer by color. The inner layer close to the wall is reddish-borwn because of the corrosion of the metal wall. Then the middle layer is grey, while the outer layer is pale yellow. This phenomenon indicates that the middle layer may be from fly ash particles in the flue gas, and the outer layer may be rich in sulphate. The right of Fig.7 presents the micromorphology of the sample collected at the finned tubes shown in the right of Fig.3. Different from the sample from the induced fan blade, the micromorphology of the samples from the second-stage LTE shows that the ash is consisted of lumpy particles with clear boundaries between adjacent clumps. One area and three spots were chosen to be analyzed by EDS, and the high percentages of sulphur were found in all of the four sites. The result proves that the sulphate is the main substance of the fouling deposits. In the spot F, the content of iron was about 25.43% higher than others. Considering the severe corrosion shown in Fig.4, the iron in the samples may be partly due to the corrosion of metal wall of the finned tube. The content of the sulphur in all of the sites listed in Tab.4 is much higher than the total of the other elements. Combined with the XRD patterns in Fig.6, the concentration difference implies that ammonium alum and letovicite exist in the deposit samples.

Figure 7. Micromorphologies of the fouling deposit samples (left) on the induced fan blade and (right) on the second-stage LTE
Table 4. EDS analyses of ash on the induced draft fan and the outlet of second-stage LTE

<table>
<thead>
<tr>
<th>Elements (wt. %)</th>
<th>Sample on the induced draft fan</th>
<th>Sample on the outlet of second-stage LTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area A</td>
<td>Area B</td>
</tr>
<tr>
<td>O</td>
<td>50.5</td>
<td>49.2</td>
</tr>
<tr>
<td>Mg</td>
<td>0.8</td>
<td>NT</td>
</tr>
<tr>
<td>Al</td>
<td>5.8</td>
<td>7.6</td>
</tr>
<tr>
<td>Si</td>
<td>9.6</td>
<td>10.6</td>
</tr>
<tr>
<td>S</td>
<td>27.1</td>
<td>26.9</td>
</tr>
<tr>
<td>Ca</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Fe</td>
<td>3.7</td>
<td>3.4</td>
</tr>
<tr>
<td>K</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Na</td>
<td>NT</td>
<td>NT</td>
</tr>
</tbody>
</table>

Note: NT represents the element is not detected.

4.4. Fouling mechanism

According to the above results and analysis, the fouling mechanism of sulphate on the induced fan blade and the second-stage LTE can be summarized the four ways as shown in Fig.8. When SO$_3$ reacts with water vapor to form sulfuric acid droplets, some of the droplets are deposited directly near the wall area where the temperature is lower. Then some of sulfuric acid is adsorbed by ash particles in the form of sulfuric acid vapor, or condensed directly on the surface of ash particles; eventually, all of them will be covered the surface of ash particles, promoting the agglomeration between ash particles, as well as the adhesion between the particles and the wall surfaces. There is also a part of sulfuric acid which absorbs ammonia in the flue gas to form sulfates such as ammonium hydrogen sulfate, ammonium sulfate and ammonium hydrogen hydroxide. The hygroscopic sulfate has a certain viscosity, which further improves the adhesion ability of ash particles and wall surfaces. Finally, sulfuric acid, sulfate and ash particles adhere to the metal surface after colliding with it, and the fouling deposits are formed.

![Figure 8. Fouling mechanism of sulfate on the blade and the wall surface](image)

At the location of the induced fan, the complex flow field increases the probability of collision between the viscous particles and the metal surfaces. On the surface of the induced fan blade, with the
increase of deposit thickness, the temperature of the inner deposition layer gradually drops below the melting point of the ammonium alum and the substance starts to solidify, so that the fouling deposit hardens into a hard cement-like ash. In addition, the large temperature difference between the inlet and the outlet of the second-stage LTE is also an important factor causing serious fouling. On the wall surface of the heat exchanger, the ash particles are covered with less sulfates such as ammonium alum, and the viscosity of the deposit is relatively weak. Meanwhile, the cooling capacity of the second-stage LTE is strong, and the sulfuric acid droplets and sulfates are more likely to condense into solids on the wall surface, so the loose and fragile deposits are formed.

5. Conclusions

Severe fouling deposits were found on the induced fan blade and the second-stage LTE in a 1000MW coal-fired power plant with ultra-low emission. The ash samples were collected and analyzed using XRD, XRF, SEM-EDS and Element Analyzer to reveal the main causes of severe fouling deposits. Firstly, it is found that the main components of the ash samples on the induced fan blade are tschermigite ((NH₄)₄Al(SO₄)₂·12H₂O), godovikovite ((NH₄)₄Al(SO₄)₂), letovicite ((NH₄)₃H(SO₄)₂), calcium sulphate (CaSO₄), calcium sulphate dehydrate (CaSO₄·2H₂O) and quartz (SiO₂). And the main components of ash samples in the second-stage LTE are tschermigite ((NH₄)₄Al(SO₄)₂·12H₂O), ferric sulphate (Fe₂(SO₄)₃), calcium sulphate (CaSO₄) and quartz (SiO₂). Then, it can be concluded that ammonium sulfate is the main component of the fouling deposits, which acts as an adhesive and make a contribution to the fouling deposits. Meanwhile, the continuous escape of high-concentration ammonia in the SCR system is also one of the important causes. Finally, it can be suggested that the temperature drop of the LTE should be designed based on the coal quality, ammonia slip quantity, ash concentration and so on. The LLT-ESP should be prevented from going beyond the state of the low-temperature operation; otherwise, it will result in a large amount of sulphuric acid condensed on the low-temperature zone of the downstream of LLT-ESP.

6. Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 51876162).

References