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In this article, we present an efficient local meshless method for the numerical 
treatment of 3-D convection-diffusion PDE. The demand of meshless techniques 
increment because of its meshless nature and simplicity of usage in higher dimen-
sions. This technique approximates the solution on set of uniform and scattered 
nodes. The space derivatives of the models are discretized by the proposed mesh-
less procedure though the time fractional part is discretized by Liouville-Caputo 
fractional derivative. Some test problems on regular and irregular computational 
domains are presented to verify the validity, efficiency, and accuracy of the 
method. 
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Introduction 

Fractional calculus has attracted significant interests in the field of engineering and 

applied sciences in the last few years. The elementary knowledge of fractional calculus can be 

found in [1, 2]. Fractional differential equations contain derivatives of any complex or real 

order, being considered as general form of differential equations. The comprehensive applica-

tions in real world problems are described by fractional PDE and it is found to be an effective 

tool in interpretation and modeling of numerous problems appear in physics and applied math-

ematics [3-8]. 

Recently, a great effort has been expended to develop the exact and approximate be-

havior of fractional PDE. In this effort several enthusiastic methods have been applied for the 

solution of fractional PDE such as homotopy analysis method [9, 10], expansion methods [11, 
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12], homotopy analysis transform method [13], fractional difference method [14], operational 

method [15], variational iteration method [5, 16-18], homotophy perturbation method [19], di-

rect approach [20, 21], Lie symmetry analysis [22], differential transform method [23], repro-

ducing kernel method [24], extended differential transform [25], local fractional Riccati differ-

ential equation method [26], meshless methods [27, 28] and Chebychev spectral method [29]. 

Different types of meshless techniques have been got expansive consideration for 

tackling diverse kind of PDE model arises in almost all disciplines of engineering. Especially 

the radial basis functions (RBF) based meshless methods are one of the most popular type 

among these methods. The meshless methods, consider a set of scattered and uniform data 

points on the domain in contrast to some classical mesh-based techniques such as finite differ-

ence and finite element methods. Therefore these processes do not require to mesh the domain. 

Moreover, the uses of RBF [30] increase advantages and preferences of technique due to this 

property that the RBF only depend on the Euclidian distance between two points of the spatial 

domain. According to these facts, meshless methods are known as very flexible and useful 

mathematical tools which can be applied to high dimensional models with irregular and com-

plicated domains. Meshless collocation technique based on the RBF is one of the very popular 

strong-form meshless methods which is widely employed to many practical problems [31, 32]. 

Although the classical meshless collocation method based on the globally supported RBF is 

known as a very efficient computational technique to deal with complicated and high dimen-

sional PDE, but the method leads to an ill-conditioned and dense system of algebraic equations. 

In the global meshless method, the RBF are used to obtain the coefficients, so that the deriva-

tives of a function f(x) can be written as a linear combination of the functional values at the 

predetermined nodes. This numerical scheme is simple and effective. However, the approxima-

tion can become unstable as the number of collocation points become large resulting in dense 

matrices. This leads to ill-conditioning and sensitivity to the shape parameters in the RBF for-

mulation. Unfortunately, this ill-conditioning and computational cost of implementation of the 

technique will increase dramatically by increasing number of the scattered data points. To ward 

off these deficiencies, the researchers suggested local meshless method (LMM) [33, 34]. 

The LMM use only neighboring collocation points and it does not have the typical ill-

conditioning that comes with large dense matrix systems. Additionally, in such RBF based 

meshless techniques, the proper selection of RBF as well as shape parameter value play a crucial 

rule in the convergence. Among these RBF, the multiquadric (MQ) is perhaps the most popular 

that is used in applications. This is due to its high convergence rate and accuracy. Perhaps a 

disadvantage that the MQ RBF has as compared to the polyharmonic splines is that the accuracy 

depends on the correct choice of the shape parameter. The same disadvantage applies to the 

inverse multiquadric (IMQ) and the Gaussian (GA) RBF as well. Finding the appropriate shape 

parameter is an ongoing research problem. In local methods, the shape parameter does not vary 

much, which is beneficial in choosing a good value. Another advantage of the local technique 

is that the accuracy is not compromised by the computational efficiency. Unlike the global ap-

proach where it is required to work with a dense matrix, the local technique results in a sparse 

matrix which can be solved accurately and efficiently. 

In the recent literature, LMM are used for better numerical approximation of complex 

PDE models [35, 36]. Meshless techniques using RBF are viable alternate numerical mecha-

nisms used for solutions of different types of complicated linear, non-linear, integer and frac-

tional order PDE arising in science and engineering. Different variants of meshless procedures 

are reported in the literature. Some of the reported work include Mohebbi et al. [37] time frac-

tional non-linear Schrodinger equation, Piret and Hanert [38] fractional diffusion equations, 
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Mohebbi et al. [39] 2-D modified anomalous fractional sub-diffusion equation, Hosseini et al. 
[40] fractional telegraph equation, Wei et al. [41] 2-D time fractional diffusion equations, 

Ghehsareh et al. [42] 2-D fractional evolution equation, Aslefallah and Shivanian [43] non-

linear time-fractional integro-differential reaction-diffusion equation, Kumar et al. [44] time 

fractional diffusion wave equation, Wei et al. [45] variable-order time fractional diffusion equa-

tion, Dehghan et al. [46] time fractional non-linear Sine-Gordon and Klein-Gordon equations 

and Avazzadeh et al. [47] time fractional diffusion-wave equation. 

Current research work is devoted to use the LMM for the numerical investigation of 

3-D time-fractional convection-diffusion and Burgers’ equations. The space derivatives are ap-

proximated by the local meshless procedure using the inverse quadric (IQ), MQ, and the GA 

radial basis functions whereas time fractional part is approximated by using Liouville-Caputo 

definition. Both rectangular and non rectangular geometries are considered in numerical exper-

iments. 

Consider the unsteady time fractional linear convection-diffusion PDE: 

 
( , )

( , ) Δ ( , ) ( , ) ( , ), Ω, 0 1, 0
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with the following initial-boundary conditions:  

 0( ,0)W z W  (2) 

 1 1( , ) ( , ), Ωz t g z t z   (3) 

where β is the diffusion coefficient, and γ the real constants. 

Similarly, the time fractional Burgers’ equation: 
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with the following initial-boundary conditions: 

 0( ,0)W z W  (5) 

 2 2( , ) ( , ), Ωz t g z t z   (6) 

where β is a diffusion coefficient. 

Scheme of the LMM 

The LMM [33] is extended to the time fractional convection-diffusion models. The 

derivatives of ( , )W z t  are approximated at the centers hz  by the neighborhood of ,hz  

1 2 3 1 2{ , , , , } { , , , },n
h

n
h h h hn hN

z z z z z z z n N   , where h = 1, 2,…, Nn. In case of 1-D, 
,z x  and for 2-D, ( , )z x y  and for 3-D case, ( , , ).z x y z  Now, in 1-D case, we have:  
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 ( )( )

1

( [ ( ,   1,2,) ,)]
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mm
h hkk

k

W x W x h N
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By substituting RBF ( )px x  in eq. (7), we have: 

 ( )( )
1 2

1

( ) ( ),   , , ,
hn

mm
h p hk p hhk

k
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where 

2 2 2 1( ) exp( ) ,/ , ( ) [1 ( ) ]  andhk p hk p hk p hk px x x x c x x c x x           

2( ) 1 ( )hk p hk px x c x x      

in case of GA, IQ, and MQ RBF, respectively. 

Matrix form of eq. (8) is: 
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where ( ),( 1) , 2, , ,p k k p hx x x p h h hn     for each 1, 2, , .hk i h hn   Equation (9) can 

be written: 
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hh h
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From eq. (10), we obtain: 
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hh h
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Equations (7) and (11) imply: 
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where  

 1 2[ , ( , () ),( ) ]
h h

T
n h h hnW x W x W x W  

In case of 2-D, the derivatives of W(x, y, t) regarding x and y are approximated in the 

comparative manner: 
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To find out the relating coefficients ( )m
k  

and ( )m
k (k = 1, 2,…, nh), we continue:  

 
( ) ( )1

hh h

m m
nn n
 A Φγ  (14) 

 
( ) ( )1

hh h

m m
nn n
 A Φη  (15) 

The previous technique can be rehashed for 

3-D case, etc. 
In 3-D geometries the local central stencils 

are developed around each center hz  whose 

schematic is appeared in fig. 1.  

Discretization of time derivatives 

The time derivative [ ( , )]/W z t t    is dis-

cretized by using Liouville-Caputo derivative 

[48]. The Liouville-Caputo fractional derivative for (0,1) is:  
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For the interval [0, t], Q + 1 is considered as equally spaced time intervals t0, t1,…, tQ, 

such that tq = qτ, n = 0, 1, 2,…, Q, τ is the time step and to approximate the first-order derivative 

involved in the time fractional term, finite difference scheme is used: 
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The term ) /[ ( ], sW z     is approximated:  

 1, ( , ( ,( )
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) )s s sW z W z W z  
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Then  

 

Figure 1. Schematics view in 3-D for ni = 7  
of local stencils [34] 
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Letting 0 /[Γ(2 )]a     and 1 1( 1) ,sb s s     s = 0, 1,…, q, we can write the 

above equation in more precise form: 
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Numerical results 

In this section, the numerical results of the 3-D time fraction convection-diffusion 

model equations using the proposed LMM. The GA, IQ, and MQ RBF are used for space dis-

cretization in all numerical simulation. All numerical experiments are performed using local 

supported domain ni = 7. All the computations are performed on HP (ProBook) PC Laptop with 

an Intel(R) Core(TM) i5-4210M CPU 2.60 GHz 2.60 GHz 4 GB RAM. The accuracy is meas-

ure through |ε|, max(ε), and ε norms which are define: 
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
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 (16) 

where ˆ  is exact solution and W is the approximate solution. 

Test problem 1. Consider eq. (1) as 3-D unsteady convection-diffusion having exact 

solution for α = 1:  

 [ ( )] 3( , ) ,     0,    ( , , ) [ 1,1]Dt E x y zW z t e t x y z       (17) 

where ( /6), 1/10, ( , ) 0,  and ( , , ).E D D F z t E E E         

The numerical results for Test problem 1 are obtained by the LMM in explicit form 

and are shown in tab. 1. Three different RBF (GA, IQ, and MQ) with shape parameter value 
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100,c   are used. The error is measure in terms of max( )  and ε for this test problem by taking 

different nodes N, time step size τ = 0.002 and final time t = 1. This shows that the suggested 

method gives good accuracy and also we can observed that the accuracy of mentioned RBF are 

all most the same. A comparison of exact and numerical results are shown in fig. 2(a), while in 

fig. 2(b) for different values of α the results are shown for x = y = z.  

Table 1. Numerical results of convection-diffusion equation for Test problem 1 

 N = 125 N = 512 N = 1331 

RBF max(ε)  ε max(ε) ε max(ε) ε 

GA 1.0325·10–5 1.3020·10–6 2.0926·10–6 4.1421·10–7 8.0243·10–8 8.1723·10–9 

IQ 1.1047·10–5 1.3935·10–6 2.2963·10–6 4.5542·10–7 4.5976·10–8 8.9339·10–9 

MQ 1.0109·10–5 1.2746·10–6 1.9962·10–6 3.9469·10–7 2.7539·10–7 7.6212·10–8 

 

Figure 2. Numerical solution of the LMM using GA RBF at t = 1 for Test problem 1 

Test problem 2. Consider eq. (1) with γ = 0, having exact solution for α = 0.9 is given: 

 2 ( ) 3( , ) e ,     0,    ( , , ) [0,1]x y zW z t t t x y z     (18) 

and the source term is: 

1.1 ( ) 2 ( )Γ(3)
( , ) e 3 e

Γ(2.1)

x y z x y zF z t t t      

The numerical results for the Test problem 2 using GA RBF in terms of max(ε) and ε 
norms, are described in tab. 2 for shape parameter value c = 10 and t = 1. It can be seen in this 

test problem as well that the LMM gives accurate results. 

Table 2. Simulation results of the LMM for Test problem 2 

 N = 125 N = 216 N = 512 

RBF max(ε) ε max(ε) max(ε) ε max(ε) 

GA 8.5305·10–4 9.3340·10–5 6.0538·10–4 7.5199·10–5 2.8195·10–4 4.5463·10–5 
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A comparison of exact and numerical results using GA RBF for N = 125 at t = 0.5, and 

taking the values of z = 0, 0.25, 0.5, 0.75, and 1 are shown in fig. 3. This figure is also the 

evidence of the proposed method for better accuracy. The error, |ε|, are also shown in fig. 4 

using N = 729 and T = 0.5. The LMM is testified on irregular domain with non-uniform nodes 

as shown in fig. 5. The numerical results are shown in tab. 3 for different final time. It is clear 

from the table that the LMM gives good numerical results irrespective of the domain and nodel 

points.  

 

Figure 3. Numerical solution of the LMM using GA RBF taking N = 125 and z = 0, 0.25, 0.5, 0.75, and 1 
for Test problem 2 

 

Figure 4. Error in term of |ε| of the LMM using IQ (a) and MQ (b) at z = 0.5 for Test problem 2 

Test problem 3. Consider the 3-D Burgers’ eq. (4). For α = 1 the exact solutions is: 
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3

1 4( , ) 1 1 exp , 0, ( , , ) [0,1]
2 4

t
x y z

W z t t x y z



   
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      

  
   

 (19) 

Figure 6 shows |ε| error norm of the LMM by taking N = 1331 and β = 1 for Test 
problem 3. The figure shows that the proposed LMM gives good results in this test problem as 

well for all the three RBF. The numerical results for computational domain given in fig. 5 in 

terms of max(ε) and ε error norms for Test problem 3 are given in tab. 4 with β = 1 and  
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N = 2046. Figure 7 shows the exact vs. numerical solution of the LMM which is self explana-

tory. The numerical results for N = 9261, β = 0.02, α = 0.8, and α = 0.9 are shown in fig. 8 at 

different values of z = 0, 0.2, 0.4, 0.6, 0.8, and 1.  

Table 3. Numerical results on computational domain in fig. 5 for Test problem 2 

 T = 0.1 T = 0.5 T = 1 

 RBF max(ε) ε max(ε) ε max(ε) ε 

GA 1.1749·10–4 2.6781·10–4 3.3914·10–3 4.5966·10–4 1.4041·10–2 5.3864·10–4 

Table 4. Simulation results on computational domain in fig. 5 for Test problem 3 

 T = 0.1 T = 0.5 T = 1 

 RBF max(ε) ε max(ε) ε max(ε) ε 

MQ 6.8692·10–5 1.4177·10–5 1.5408·10–4 7.5077·10–5 3.4544·10–4 1.6527·10–4 
 

 

Figure 5. Computational domain with  
non-uniform nodes [34] 

 

Figure 6. Error in term of |ε| at x = y = z  
for Test problem 3 

 

Figure 7. Exact vs. numerical solutions with β = 0.02 at z = 0.5 for Test problem 3 



Srivastava, H. M., et al.
 

 

Figure 8. Numerical solution for α = 0.8 (a) and α = 0.9 (b) at z = 0, 0.2, 0.4, 0.6, 0.8, and 1  
for Test problem 3

Conclusion 

In this work, we have applied a local meshless method based on RBF as a modern 

powerful numerical method to investigate 3-D time dependent fractional convection-diffusion 

PDE models. The time derivative part is defined and simplified in Liouville-Caputo sense and 

the scheme is constructed for 0 < α < 1. Various test problems have been considered on regular 

and irregular domains to check the accuracy of the proposed scheme. The numerical results are 

the evidence that the suggested LMM is a flexible interpolation method as it produce the coef-

ficient matrix well-conditioned. In light of the current work we can say that the proposed tech-

nique is powerful and effective to find the numerical solutions of 3-D time dependent fractional 

PDE, so it can be also applied to a wide range of complex problems that occur in natural sci-

ences and engineering.  
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