EFFECTS OF INJECTION TIMING ON COMBUSTION PERFORMANCE AND EMISSIONS IN A DIESEL ENGINE BURNING BIODIESEL BLENDED WITH METHANOL

Jie RUAN¹, Helin XIAO²*, Xiaolong YANG², Fengyun Guo², Jiaqi Huang², Hongling JU²

¹Hubei Key Laboratory of Advanced Technology for Automotive Component, Wuhan University of Technology, 122Luoshi Road, Wuhan 430070, China;
²Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China;

*Corresponding author: Helin Xiao, email: hlxiao_qcxy@whut.edu.cn

Currently, biodiesel has been received much attention from many researchers around the world due to its clean and renewable characteristics. In the present study, combustion and emissions characteristics have been studied on a modified four-cylinder, 4-stroke, water-cooled, DICI engine equipped with a common rail fuel injection system fueled with methanol-biodiesel blends as well as pure biodiesel. The experiment was operated at a constant engine speed of 1800 rpm and injection timing from 2.5 to 22.5°CA BTDC. With the injection timing advanced, peak in-cylinder pressure and maximum HRR(heat release rate) increased while combustion start points were advanced. Ignition delay was shortened first and then prolonged while BTE(brake thermal efficiency) was increased first and then decreased. With the injection timing in advance, NOx emissions increased, 1,3-butadiene and benzene emissions decreased while HC and acetaldehyde emissions decreased first and then increased, and soot emissions increased first and then decreased.

Keywords: Biodiesel-Methanol blends; Injection timing; Combustion and Emissions; diesel engine

1 Introduction

With the rapid development of industrialization, supply of petroleum could not satisfy the excessive consumption in modern industry and emissions from petroleum could not fit for the stringent emission regulations. Among them, widespread application of internal combustion engines had led to increasing consumption of fossil fuels, resulted in significant energy crisis. Based on these reasons, it was necessary to search for advanced combustion techniques and alternative fuels to fulfill these challenges. Biodiesel has been widely used as an alternative fuel because of high CN (cetane number), renewability as well as good compatibility for internal combustion engine [1-5].

Biodiesel was derived from biological materials. Waste oils, animal fats and woody oils were conventional sources. It was considered to be an accessible and environmentally friendly fuel [6-9]. However, biodiesel also had some limitation for applying to diesel engine. Biodiesel had different compressibility from diesel because of its higher viscosity than that of diesel fuel, resulted in significant changes in spray characteristics when directly used in diesel engine, thus affected the quality of mixture formation and a series of evolution processes of soot particles. In addition, although the addition of biodiesel could significantly reduce CO, soot and HC emissions, some unregulated emissions (acetaldehyde, benzene and 1,3-butadiene) were produced from biodiesel [10-14]. These
emissions originated from the combustion of a small amount of alcohols contained in biodiesel. Thus, looking for superior diesel substitutes would be of significant importance in the field of energy development.

As a kind of renewable fuel, methanol had attracted worldwide attention because of its superior physicochemical performance, as shown in Table 1. It had certain advantages over gasoline and diesel in terms of power, economy and environmental protection [15-20]. Firstly, the engine power could be greatly increased by reforming the fuel system due to the high octane number of methanol. Secondly, the production cost of methanol had a great advantage due to “multi-supply” [21] methanol production mode. Moreover, methanol had 50% oxygen content which could improve combustion process.

However, methanol could not apply to diesel engine directly due to its high octane number. Several scholars had studied on the combustion and emissions of methanol in internal combustion engine. Yao et al. [22] explored combustion and emissions performance of high proportion methanol/diesel blends on diesel engines. The results showed that HC and CO emissions increased while significantly decreased soot and NOX emissions. Wei et al. [23] probed the influence of premixed ratio of methanol on combustion and emission characteristics of diesel engine. Moreover, high premixed ratio of methanol prolonged ignition delay, NOX and soot emissions declined while HC and CO emissions increased. Rakesh et al. [24] compared the combustion performance and emission characteristics of HCCI engine fueled with ethanol and methanol. The experiments highlighted that compared to gasoline and ethanol, methanol auto-ignited earlier and showed lower IMEP\text{max}. These studies showed that methanol would be a promising alternative fuel for existing combustion systems.

In summary, methanol addition into biodiesel could improve its fuel atomization characteristics. Moreover, biodiesel-methanol blends could be applied to diesel engine without much modification. Meanwhile, Injection timing determined the combustion phase of diesel engine, so the suitable injection timing was conductive to improve combustion performance and emission characteristics of internal compression combustion engine. Advanced injection timing would make pressure rise rate raised sharply, resulting in rough combustion, cylinder knocking, deflagration. Meanwhile, delayed injection timing led to combustion deterioration which reducing power and economy [25,26]. Therefore, it was of great importance to determine suitable injection timing for improving combustion and emission performance. In addition, this article explores the effect of methanol on improving the combustion and emission performance of biodiesel.

2 Experimental

2.1 Engine and instrumentation

The test was conducted on a modified four-cylinder, 4-stroke, water-cooled, direct injection compression internal (DICI) engine mounted with a high pressure common rail fuel injection system as illustrated in Fig.1. Meanwhile, the relevant parameters were displayed in Table 1. The engine was connected with an eddy current(EC) dynamometer to keep the speed constantly at 1800 rpm (±5 rpm) and adjust torque output. Moreover, using an Electrical Control Module(ECM) to control and monitor engine working parameters.

The in-cylinder pressure collected by Kistler 6025C pressure transducers mounted in the cylinder head. These measured signals were passed through a charge amplifier and then acquired by a CB-466 combustion analyzer. In-cylinder Pressure acquisition was triggered at a 0.25°crank angle(CA) intervals for 100 successive cycles. Coolant temperatures was precisely maintained at 86 °C (±1 °C) by PID controller and oil temperature was maintained around 87 °C(±1 °C) in pace with variable
Table 1 Engine specification

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of engine</td>
<td>Four-cylinder, Four-stroke</td>
</tr>
<tr>
<td>Bore</td>
<td>96 mm</td>
</tr>
<tr>
<td>Stroke</td>
<td>103 mm</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>17.5</td>
</tr>
<tr>
<td>Displacement</td>
<td>2982cc</td>
</tr>
<tr>
<td>Rated power</td>
<td>85 kW</td>
</tr>
<tr>
<td>Rated speed</td>
<td>3200 rpm</td>
</tr>
<tr>
<td>Type of ignition</td>
<td>Compression ignition</td>
</tr>
<tr>
<td>Method of starting</td>
<td>Electric start</td>
</tr>
<tr>
<td>Maximum torque(N-m)</td>
<td>300</td>
</tr>
</tbody>
</table>

Moreover, intake air temperature was stabilized around 26 °C (±0.5 °C). The injection pressure is maintained at 120 MPa. Using an AVL gas analyzer to measure gaseous emissions while the accuracy of HC, CO as well as NOx were 1 ppm, 1ppm and 0.1%, respectively. Various unregulated emissions were collected by sampling bag first and then gauged via a gas chromatograph (GC) which were accurate to 0.1 ppm. Soot emissions were measured through opacimeter with the accuracy of 0.1m⁻¹.

2.2 Test fuels and experimental procedures

General properties of biodiesel and methanol were listed in Table 2. Biodiesel, as the base fuel, was supplied by Longhai Biological Technology Co.Ltd. Methanol was provided by Jupeng Chemical Corporation at 99% purity. Mixtures of 0%,10%,15% and 20% by mass fraction of methanol with biodiesel were evaluated, marked as BM0, BM10, BM15 and BM20. This experiment was conducted to keep thermal value in every cycle consistent at 787.5J to better investigate the impact of fuels properties on combustion performance and emissions. Therefore, this experiment needed to adjust injected fuel mass to keep the same energy input due to the different low heating values of various test fuels. In addition, the experiment was operated at various start of injection (SOI) time which was adjusted from 2.5 to 22.5°CA BTDC (before top head center) with an increment of 5°CA. Meanwhile,
all experimental conditions were conducted at a constant speed of 1800 rpm. In order to reduce experimental error, measurement data of each operating condition was acquired for 5 timings at least. Besides, the data of BM20 at 2.5°CA BTDC couldn’t be measured due to serious combustion deterioration.

Table 2 Properties of diesel, biodiesel, methanol and gasoline

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Diesel</th>
<th>Biodiesel</th>
<th>Methanol</th>
<th>Gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₁₂-C₂₅</td>
<td>-</td>
<td>CH₃OH</td>
<td>C₄-C₁₂</td>
</tr>
<tr>
<td>Octane number</td>
<td>20-30</td>
<td>35-43</td>
<td>114</td>
<td>80-97</td>
</tr>
<tr>
<td>Cetane number</td>
<td>40-55</td>
<td>50-62</td>
<td>3</td>
<td>0-10</td>
</tr>
<tr>
<td>Oxygen content (%)</td>
<td>0</td>
<td>10.8</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Density at 20°C (kg/m³)</td>
<td>826</td>
<td>881</td>
<td>796</td>
<td>744.6</td>
</tr>
<tr>
<td>Latent heating (kJ/kg) at 25°C</td>
<td>270-301</td>
<td>300</td>
<td>1109</td>
<td>373</td>
</tr>
<tr>
<td>Lower heating value (MJ/kg)</td>
<td>42.5</td>
<td>37.5</td>
<td>19.7</td>
<td>42.9</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>270-350</td>
<td>280-456</td>
<td>470</td>
<td>390-410</td>
</tr>
</tbody>
</table>

3. Results and discussion

3.1 Analysis of in-cylinder combustion characteristics

(a)

(b)
Fig. 2. Pressure and HRR of four test fuels at different injection timings

Fig. 2 displayed the curves of in-cylinder pressure and HRR of the diesel engine fueled with all the test fuels at variable injection timings. The Fig. 2 (a) and Fig. 2 (b) showed that the peak pressure in cylinder decreased with injection timing delayed. Moreover, the combustion tended to occur in expansion stroke, led to the decline of the peak pressure in the cylinder. As Fig. 2 (c) showed, when injection timing at 2.5°CA BTDC, compared to BM0 and BM10, the combustion of BM15 had deteriorated. It could be explained by following reason. With methanol fraction increasing, biodiesel-methanol blends owned lower CN because CN of methanol was lower than biodiesel, caused BM15 more difficult to reach ignition condition compared to BM10. Therefore, the burning of BM15 mainly occurred at expansion stroke, thus led to combustion deterioration. The pre-mixed gas of biodiesel accumulated during the ignition delay was burned together, and the peak value of the heat release rate was high. At this time, the injection process had not stopped. Due to the poor atomization effect of the biodiesel, it took a certain time to reach the ignition conditions. There was a clear interval of heat release rate between the ignition delay and the combustion duration. The atomization effect of BM10 was better than biodiesel, so there was no obvious interval between the ignition delay and the combustion duration. As for BM15 and BM20, the higher latent heat of vaporization of methanol and the lower CN made it difficult for the fuel to reach the ignition condition. Therefore, the phenomenon of "double peaks" had appeared. According to Fig. 2, it could be seen that the HRR peaks of BM20 appeared later than that of BM15. This was because methanol added into biodiesel could decline CN. From Fig. 2(d), the in-cylinder pressure and HRR weren’t given when injection timing at 2.5 °CA BTDC because the combustion of BM20 appeared serious deterioration.
Fig. 3. Variation of ignition delay at versus injection timings for different fuels

Fig. 3 showed ignition delay (defined as the crank angle interval from the start injection timing to 10% burning point) was prolonged with the increment of methanol ratio, which could be attribute to the properties of methanol. Firstly, the higher latent heat of vaporization for methanol declined in-cylinder temperature so as to prolong ignition delay. Secondly, both the lower CN and higher auto-combustion temperature for methanol made it more difficult to be ignited, thus prolonged ignition delay. When injection timing at 22.5°CA BTDC, there was enough time forming uniform premixed gases. With injection timing in advance, higher temperature and pressure in the cylinder made it easier to reach ignition condition, thus shorten ignition delay. When injection timing near TDC, the burning mainly occurred in expand stage, due to the short duration in high temperature environment, the ignition delay was prolonged.

Fig. 4. Variation of combustion duration at versus injection timings for different fuels

The combustion duration (defined as the crank angle interval from 10% burning point to 90% burning point) of the test fuels at different injection timings was shown in Fig. 4. When injection timing at 2.5°CA BTDC, the combustion duration of BM15 was obviously higher than that of BM0 and BM10. This is because under the influence of short high temperature duration in cylinder when injection timing at 2.5°CA BTDC, lower CN and higher latent heat of vaporization of fuel blends led to combustion deteriorates, so the combustion duration was prolonged. As injection timing was further advanced, the combustion duration decreased with the increase of methanol ratio. In addition to the
effect of ignition delay, the rise of oxygen content in the fuel blends accelerated combustion process and thus shorten combustion duration.

![BTE Graph](image)

Fig.5. Variation of BTE at versus injection timings for different fuels

Fig.5 showed BTE of four test fuels at variable injection timing. With methanol faction increasing, BTE decreased gradually at all test injection timings. On one hand, methanol addition into biodiesel could improve combustion process due to its higher oxygen content than biodiesel, thus reduced BTE. On the other hand, the latent heating of methanol was lower than biodiesel so that more fuel mass should be injected at same condition, resulted in increasing BTE. Besides, BTE of BM15 had greatly decreased at 2.5°CA BTDC due to combustion deterioration.

3.2 Regulated emission characteristics

![NOx Graph](image)

Fig.6. Variation of NOx emissions with injection timings for different fuels

The emissions of NOx were shown in Fig.6. For the four test fuels, NOx emissions significantly raised with the advance of injection timing. According to the research of Fernando et al [27], the formation of NOx was determined by high temperature, enough oxygen content as well as residence timing in cylinder. Therefore, advanced injection timing promoted sufficient premixed combustion and the pressure and temperature in the cylinder increased, which promoted the formation of NOX. In the same injection timing, the fuel blends produced more NOX with the increment of methanol expect 2.5°CA BTDC, the higher oxygen content than biodiesel was one of the mainly reason of NOX formation.
Fig. 7. Variation of HC emissions with injection timings for different fuels

Fig. 7 showed the HC emissions from the test fuels at different injection timings. With the injection timing in advance, HC emissions declined first and then increased. As injection timing near TDC, the former analysis showed ignition delay was prolonged and the mixture was easy to diffuse into the slit area, which produced a large amount of HC. As the injection timing was advanced, HC emissions reached minimum value at 12.5-17.5°CA BTDC for both test fuels. However, as injection timing at 22.5°CA BTDC, the fuel spray penetrated longer distance and was easy to inject into the cylinder wall, which led to wall quenching phenomenon and increases HC emissions. With methanol fraction increasing, HC emissions raised gradually. Methanol addition into biodiesel could decline CN of the blends and then prolonged ignition delay, promoting more fuel blends contacting the cylinder wall with lower temperature and the wall quenching effect [28] was aggravated, which increased HC emissions.

Fig. 8. Variation of CO emissions with injection timings for different fuels

Fig. 8 displayed the CO emissions for each test fuel at various injection timings. It was noticeable that fuel blends had advantages on CO emissions compared with biodiesel except 2.5°CA BTDC. CO emissions reduced first and then almost remained unchanged with injection timing in advance. Under the condition of 2.5°CA BTDC, the main burning occurred at expansion stroke, thus the lower combustion temperature and pressure in cylinder retarded the oxidation process of CO. With the injection timing advanced, considerable pre-mixture was formed during ignition delay and burning
together near TDC, which produced higher temperature and pressure in cylinder, thus promoted CO oxidation. Except for 2.5°CA BTDC, adding methanol increased CO emissions but at other main injection timing promoted CO oxidation for fuel blends.

![Fig.9. Variation of soot emissions with injection timings for different fuels](image1)

Fig.9 showed the variable tendency of soot emissions under various injection timings. Soot emissions of the test fuel raised first and then decreased with the main injection timing advanced except BM15. At 2.5°CA BTDC, BM15 produced higher soot emissions due to the deterioration of combustion. With injection timing in advance, ignition delay was shorted first. On one hand, the proportions of diffusive combustion increased so the soot emissions increased. On the other hand, combustion was far from TDC and lower temperature in cylinder retarded soot formation. Therefore, the soot emissions of the test fuel varied slowly from 12.5° to 17.5°CA BTDC, and the soot emissions decreased significantly when injection timing at 22.5°CA BTDC.

3.3 Unregulated emission characteristics

![Fig.10. Variation of 1,3-butadiene emissions with injection timings for different fuels](image2)

Fig.10 indicated the influence of injection timing on 1,3-butadiene emissions of test fuel. The emissions of 1,3-butadiene from test fuel decreased with main injection timing in advance. As Zhu Lei et al. [29] concluded, higher combustion temperature inhibited the formation of 1,3-butadiene. The high combustion temperature duration was prolonged with the injection timing away from TDC, which promoted the oxidation of 1,3-butadiene. For different test fuels, the emissions of 1,3-butadiene...
decreased with the addition of methanol except for 2.5°C BA BTDC at the same injection timing, as the reason mentioned above. However, 1,3-butadiene was hard to oxidize at low in-cylinder temperature and pressure due to the lag of combustion starting point at 2.5°C BA BTDC. The higher latent heat of methanol vaporization further declined the in-cylinder temperature, so considerable 1,3-butadiene emissions from BM15 was produced.

Fig.11. Variation of acetaldehyde emissions with injection timings for different fuels

Fig.11 showed the variations on acetaldehyde emissions at various injection timings. Acetaldehyde emissions first decreased and then increased with advance of injection timing. When main injection timing at 2.5°C BA BTDC, the starting point of combustion was too close to TDC, which resulted in the combustion mainly occurring in the expansion stroke, forming suitable condition for the formation of acetaldehyde. As injection timing at 12.5°C BA BTDC, the higher combustion temperature in cylinder improved the combustion efficiency, and promoted the post oxidation of acetaldehyde at exhaust stroke. However, when injection timing at 22.5°C BA BTDC, acetaldehyde emissions increased because injection timing was too early and long injection penetration distance caused partial fuels injected into cylinder wall forming quenching layers, resulting in a large amount of acetaldehyde emissions, which increased the acetaldehyde emissions. Moreover, the addition of methanol also increased the acetaldehyde emissions at the same injection timing.

Fig.12. Variation of benzene emissions with injection timings for different fuels

Fig.12 indicated the variation of benzene emissions at various injection timings. Benzene
emissions of test fuel decrease gradually with injection timing in advance. It could be explained by that combustion temperature increased with the injection timing far away from TDC. On the one hand, the combustion duration prolonged, which promoted the oxidation process of benzene emissions. On the other hand, the benzene ring structure was easier to be broken and restrained the formation of benzene ring at higher temperature. In addition, benzene emissions decreased with the rise of methanol ratio under various injection timings, the reason had been discussed in the previous paper.

4 Conclusion

In this paper, combustion performance and emission characteristics of methanol and biodiesel blends under various injection timings has been investigated in a diesel engine. The main conclusions are extracted below:

With injection timing in advance, in-cylinder pressure and HRR of test fuels increased while combustion phase was advanced. The blending with methanol increased the in-cylinder pressure and HRR at advanced injection timing.

1) The ignition delay was shorted first and then prolonged with the injection timing advanced. The change trends of the combustion duration of test fuels except BM15 were opposite to that of the ignition delay.
2) Except for the main injection timing of 2.5°CA BTDC, ignition delay was prolonged with methanol ratio increasing while combustion duration showed the opposite trend. Delayed injection timing was not fit to the fuel blends with higher methanol ratio.
3) With the injection timing advanced, the BTE increased first and then decreased. The blending with methanol decreased BTE at the same injection timing.
4) With injection timing in advance, NOX emission increased, CO emission decreased, soot emissions first increased and then decreased, HC emission first decreased and then increased slightly.
5) For unconventional emissions, 1,3-butadiene and benzene emissions reduced with injection timing advanced, but acetaldehyde emissions decreased first and then increased.
6) Expect 2.5°CA BTDC, the blending with methanol increased acetaldehyde and NOX emissions but decreased HC, CO, 1,3-butadiene and benzene emissions.

Acknowledgments

The authors would like to thank the National Natural Science Fund of China (No. 21377101), National Natural Science Fund of China (No. 51276132) and Wuhan University of Technology for financial support to this study.

Reference

[5] Deepak A, Shailendra S, Kumar A. Experimental investigation of control of NOx emissions in

