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Recent advances and findings reported in the literature show that the lattice 
Boltzmann method can be a viable and rather efficient alternative to classical 
numerical methods in modeling multi-species flows. Based on the kinetic theory 
of multicomponent gases, multi-fluid approaches are derived. Each species 
evolves according to the specific properties, a proper coupling must be intro-
duced for modeling the diffusivity. In recent years, a discrete kinetic scheme for 
multi-component flows has been proposed which was able to solve the Maxwell-
Stefan system of equations for any number of species. However, reacting flows 
lead to additional challenges and have seldom been studied by lattice Boltzmann 
method. The aim of the present work is to implement this model in the lattice 
Boltzmann solver, extend it to take account multiple chemical reactions. The tem-
perature is modeled through separate distribution function and the flow distribu-
tion function is assumed to be independent of temperature. The performance has 
been checked for a binary diffusion flow and a counter-current propane/air re-
acting flow. The obtained results show that this model able to deal with multi-
species flows and solves the multi-component system of equations  
Key words: lattice Boltzmann, multi-species flows, multi-component models, 

reacting flows 

Introduction  

With two decades’ development, the lattice Boltzmann (LB) method has been grad-
ually accepted as a useful alternative to simulate various complex fluid systems [1]. The 
popularity of this method is based in part on its simple formulation and application to flow 
problems compared with solving the Navier-Stokes (N-S) equations, and in part on the high 
level of scalability on parallel processing systems [2]. So far, the mostly used model equation 
for the Boltzmann formulation is the Bhatnager-Gross-Krook (BGK) equation, named after 
those who first proposed it, Bhatnager et al. [3]. They noticed that the main effect of the colli-
sion term is to bring the velocity distribution function closer to the equilibrium distribution. 
The Lattice Boltzmann BGK method (LBBGK) is a numerical scheme for simulating viscous 
compressible flows in the subsonic regime [4, 5]. In recent years, LBGK has achieved great 
success in simulations of fluid flows and in modeling physics in fluids.  

Given the complex nature of multi-species flows and the associated computational 
costs, it is important to develop computationally efficient solvers for them. Different models 
have been developed in the context of LB for different levels of physical approximations, 
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from the generalized Fick model to more complex models such as the Maxwell-Stefan system 
of equations. In the modelling of mixtures of gases, the effect of the different molecular mass-
es of the gases must be taken into consideration and the collision term must be modified to 
take account the momentum exchanged between the species. Gunstensen et al. [6] introduced 
a color gradient model. Two components represent two types of fluid with their own distribu-
tion functions, and follow their own evolution equation. The collision step includes self- and 
cross-interactions with other types of particles. Orlandini et al. [7], Osborn et al. [8], and 
Swift et al. [9] developed the free energy model. This model included thermodynamic equilib-
rium functions of phases and a term describing the surface tension was added to the equilibri-
um distribution function. It is a fully thermodynamically consistent binary fluid LB model. 
Sofonea and Sekerka [10] who realized that if BGK-style models were used to describe the 
collision process, adopted the approach with functions of the self-collision and cross-collision 
relaxation frequencies. In the approach of [11, 12], an LB model for low Mach number flows 
with variable density, is developed based on a LBBGK model. An advanced BGK model pro-
posed by Andries et al. [13] in case of isothermal flow, which is based on only one global op-
erator for each species. Based on Sirovich’s theory [14], Luo [15] developed a unified ap-
proach for developing the LB models for multicomponent fluids. The model in [16] have 
adopted a force coupling in the momentum equations, derived from a linearized kinetic term 
and further the model by Asinar [17, 18] avoided a linearization by two collision operators. In 
[19] another LB scheme has been proposed aiming to minimize a proper H function defined 
on the fully discrete lattice. Flekkoy [20] and Shan and Chen [21, 22] developed a pseudopo-
tential LB model, this model properly takes account the momentum exchange between the 
species by pseudopotential interactions. The thermal pseudopotential LB method was firstly 
attributed by Zhang and Chan [23], then Li et al. [24] developed a hybrid thermal LB-MRT 
model considering the vapor-liquid phase change and this model was extended to the multi-
component LB model by Zheng et al. [25, 26]. The models introduced above have been well 
studied by many authors, however, these models have various shortcomings. Some of them 
work only for binary mixtures, others resolve only Fick’s diffusion instead of Maxwell-Stefan 
diffusion and others are not parameter free. In [27] the authors presented a LB method, con-
sisted with gas and liquid multicomponent flows, which remedied these shortcomings.  

The present work implements the model by Zudrop et al. [27] in the LB solver, ex-
tend it to take account multiple chemical reactions. This model will be implemented in our in-
house code ALBORZ [28, 29] and benchmarked for a variety of configurations in this frame-
work. The obtained performance and scalability maintain the computational advantages of the 
standard LB method. 

Lattice Boltzmann equations 

The Boltzmann transport can be written:  

 ξ
Fξf

f f Ω
t m


    


 (1) 

Equation (1) is an advection equation with a source term , or advection with a re-
action term, which can be solved exactly along the characteristic lines that is tangent to the 
vector ξ,  if  is explicitly known. With a BGK relaxation term ω and the local equilibrium 
distribution function f (eq), the collision operator is replaced:  
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 (eq) (eq)1[ ] [ ]Ω f f f f


     (2) 

where  is the collision frequency and  = 1/ – the relaxation factor. Physically, the approx-
imation captures the relaxation due to intermolecular collisions of a non-equilibrium gas, f, 
towards its equilibrium distribution function, f (eq). This explains the appearance of the colli-
sion frequency, the higher the frequency of collisions, the more rapid the convergence to equi-
librium. After BGK approximation, the collision operator is now linearized, the Boltzmann 
equation (without external forces) can be approximated: 

 (eq)1ξ [ ]f
f f f

t 


   


 (3) 

In LB method, the previous equation is discretized and assumed it is valid along 
specific directions, the solution domain is divided into lattices: 

 (eq)1c [ ( , ) ( , )]f
f f x t f x t

t


   



   


 (4) 

At each lattice node, the factitious particles reside. Some of these particle streams 
along specified directions to the neighboring nodes. The number of directions, linkage, de-
pends on the lattice arrangement. The common terminology used in LB methodis to refer to 
the dimension of the problem and the number of speeds is using DnQm, where n represent the 
dimension of the problem and m refers to the speed model, number of linkages. The velocity 
directions of the D2Q9 LBGK model are defined:  
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 (5) 

where c = x/t and x and t are the lattice constant and the time step size, respectively. In or-
der to recover the N-S and continuity equations, the equilibrium distribution function is set to:  

 
2 2

(eq)
2 4 2

(e u) (e u)9 3 u1 3
2 2

f
c c c
 

 
 

    
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 (6) 

with the weight coefficient: 
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 (7) 

The fluid density, ρ, and velocity, u,  are obtained from the density distribution 
function f(x, t):  
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 f


   (8) 

 u e f 


   (9) 

The mass and momentum equations can be derived from the model via multiscaling 
expansion:  

 ( u) 0
t





 


 (10) 

  2u ( uu) u [ ( u)]( )p
t


   


      


 (11) 

where 2
sp c   is the pressure / 3,sc c  is the sound speed, and 2(2 1) /6c t     is the 

kinematic viscosity.  

Model for species diffusion  

Diffusion describes the spreading of particles through random motion usually from 
regions of higher concentration to regions of lower concentration. The diffusion velocity is 
the term describing the bet flux due to this random motion. The diffusion velocities can be 
computed through the Maxwell-Stefan system of equations: 
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          
  (12) 

where Dpk = Dkp is the binary mass diffusion coefficient of species p into species k. The DT.k is 
the thermal diffusion coefficient for species k. The mole fraction of kth species Xk is computed:  

 k k
k

W
X Y

W
  (13) 

with W is the mean molecular weight of the mixture and Wk – the molecular weight of species 
𝑘. The mass fraction Yk for k = 1 to N where N is the number of species in reacting mixture. 
Yk is defined by:  

 k
k

m
Y

m
  (14) 

where mk is the mass of species k and m – the total mass of gas in this volume. Neglecting 
higher order effects, such as thermal diffusion, pressure diffusion and body forces, the Max-
well-Stefan equation for N species can be re-written:  
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Note that the concentration gradient of species k depends on the difference in veloci-
ty of the kth species and all the other species in the mixture. 

Flow field  

The total mass and momentum conservation equations are modeled for fluid dynam-
ics by [30]:  

 u 0i

it x

 
 

 
 (16) 

 ,
1
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N
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     

     
  (17) 

In eq. (17), fk.j is the volume force acting on species k in direction j. The mass con-
servation equation for species k is written:  

 ,[ (u ) ] for 1,k
i k i k k

i

Y
V Y k N

t x


 

 
   

 
 (18) 

In eq. (18), Vk.i is the ith component of the diffusion velocity Vk of species k and 
˙

k  
is the reaction rate of species k: 

 ,
1

0
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k
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

  (19) 
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

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To extend the LB method to multicomponent flows, the interaction of the species 
has to be taken into account, which is usually achieved by a modification of the equilibrium 
part and the relaxation towards it. The LB model derived in [27] presented a finite discrete ve-
locity model: 

 (eq),( )u mm m m m
t k k k kkf f f f      (21) 

where the relaxation parameter k for species k is defined by:  

 k
KB




  (22) 

where K is the bulk modulus of the mixture and B is a free parameter to be chosen with re-
spect to stability. In particular, we obtain 2 /sc K   and this model assigned the same relaxa-
tion parameter to all the species, we choose B = 6 such that k = 2. After applying a reformu-
lation in terms of the transformed variable (eq),/2[ ].mm m m

k k k t k kf f f f     The LB method 
like scheme:  

 (eq),( ) ( , )u , [ , , ]( ) (

2

)
1

mm m m mt
k t t k kk

t

k

f x t f f x t f x tx t


 




    



 (23) 
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The equilibrium of the model is given by:  

 
* 2 2

(eq),
2 4 2

u v (u v) v
2

m m
m m m k

k kk
s s s

f s
c c c

   
 
 
 





 (24) 

where m are the lattice weights. A modified velocity *vk  for each species k in the bilinear 
equilibrium part is defined: 

 ,*v v v v( )k l
k k k l l k

l

B

B
     (25) 

and mass averaged mixture velocity v  in the equilibrium part is defined:  

 vv l l

l




  (26) 

The mass averaged mixture velocity v  recovers Maxwell-Stefan diffusion equations 
for each species k. According to the applied variable transformation, the modified mixture ve-
locity *vk  can be computed for t + t  by solving anelement local linear equation system for 
vk  and plugging it in eq. (25): 

 , ,* 1v v v v
2 2

k l k lt k t k
k k k l k l k l l

kl l

B B

B B

   
    


     (27) 

Hence, the scheme remains fully explicit. The parameters in eq. (24) for a D2Q9 lat-
tice are defined:  

 

,
,
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where min m   is the minimal molecular weight of all species. Macroscopic quantities are ob-
tained as moments of m

kf , density m
k m kf    and velocity .v um m

k m kf  

Temperature field 

The passive scalar approach consists of solving an additional transport equation for 
the scalar being modeled. In this section, temperature is modeled through an advection-
diffusion LB scheme shown to recover the following PDE:  

 
0 0 1

u k

K

i k k
i i p i k

T T T
W h

t x x c x




 

    
   

     
  (29) 

The distribution function for the temperature field is:  

 (eq), ov

T

1( , ) ( , ) [ ( , ) ( , )]m m m m m m t
t t

p

Q
g x u t g x t g x t g x t

C

 
  

 
       (30) 

where Cp [Jkg–1K–1] is the heat capacity and it is often assumed to be constant in many theo-
retical approaches and combustion codes, Q  [Jmol–1] is the heat of overall reaction, and  
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ωov [kgm–3s–1] – the overall reaction rate. The relaxation coefficients of temperature scheme 
can be related to thermal diffusivity, k, given by: 

 2T2 1
6 tc


 


  (31) 

The temperature T is calculated by gm
mT   , the corresponding LB time-evolution 

algorithm is:  

 
2 2

(eq),
2 4 2

u v (u v) vg 1 3 9 3
2

m m
m m

s s s

T
c c c


 

    
  

 (32) 

Computational set-up 

In order to have a better idea of the possible sources of error in weakly-compressible 
LB-type numerical algorithm, the multi-component algorithm is benchmarked through text-
cases ranging from a binary diffusion configuration, with species having the same molar mass 
and different molar masses, to a counter-current propane/air reacting flow [31]. 

Case 1. Binary diffusion flow 

The first simulation set-up, taken from 
[32], consists of two chemical species with the 
same molar mass. The binary diffusion coeffi-
cient, D , is defined to be 0.68 cm2/s, The 
computational domain has 500 lattice nodes in 
the y-direction with periodic boundary condi-
tions on the horizontal boundaries and bounce-
back boundary conditions on the vertical 
boundaries. The overall configuration is shown 
in fig. 1. The lattice parameters have the fol-
lowing values: x = 3.85 um and t = 44 ns. The 
initial density profile for each species is as-
sumed to have a hyperbolic tangent profile in 
the y-direction of the form:  

 
max

, , , ,
th

1
1 2( ) ( – ) tan  ( )
2 h l h ly

y y

        


  
  

    
  
   

 (33) 
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th

1
1 2( ) ( – ) tan  ( )
2 h l h ly

y y

        


  
  

    
  
   

 (34) 

where ymax is the domain length and th is the thickness of the diffusion profile. For this com-
putation, th = 0.1 mm. The minimum and maximum densities are , , 1.123h h     kg/m2 
and , , 0.07l lho 


   kg/m2, respectively.  

 
Figure 1. Set-up of the binary diffusion case 
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The second study is that of two gases with different molecular weights diffusing into 
each other. Here convection is not considered and reactions are neglected. The binary diffusion 
coefficients Dc = 0.68 cm2/s, the computational domain has 500 lattice nodes in the y-direction 
and boundary conditions are the same as in the previous study. The lattice spacing is 1/2(2 )t  
with x = 2 um and t = 3 ns. The initial gas density for each species follows eqs. (33) and 
(34) with th = 0.05 mm, h = 1.250 kg/m2, c.h = 0.625 kg/m2, .l = 0.0007 kg/m2, and  
c.l = 0.00035 kg/m2.  

Case 2. Counter-current propane/air reacting flow 

Model and assumptions 

In this section, a counter-flow premixed flame is modeled for simulation of combus-
tion field. The 2-D rectangular coordinates are used. Two parallel stationary walls are located 
at y = –L and L, where L is the half-length of the distance between walls. The combustible 
mixture is uniformly injected from the top and bottom walls, and it reacts in the reaction zone. 
Then, two reaction fronts are formed in this flow. The burned gas flows outward along the  
x-direction.  

Figure 2 shows the schematics of this 
flame formed in counter flow. The fuel is pro-
pane and it is premixed with air. The reaction is 
an over-all one step reaction, expressed:  

 3 8 2 2 2C H 5O 4H O 3CO Q     (35) 

where Q  is the heat of overall reaction. The 
overall reaction rate ov is calculated by the Ar-
rhenius law:  

 
3 8 2ov ov C H O exp

R
E

k C C
T


 

  
 

 (36) 

with 
3 8C HC  and OC  are molar concentrations for species C3H8 and O2, kov – the reaction co-

efficient, and E – the effective activation energy. To obtain the reaction rate, the molar con-
centration of propane or oxygen is determined by:  

 0 0k
k

k

Y T
C

M T

  
  

 
 (37) 

where Mk is the molecular weight of species k, Yk, is the mass fraction of species k. The mass 
rate of production for species k can de computed as:  

 ovk k ka M   (38) 

where ak are the stoichiometric coefficients. In this reaction, 
3 8C H 1a   , 

2O 5a   , 
2CO 3a   

𝑎𝐶𝑂2 = 3, 
2H O 4a  .  

Based on Yamamoto’s study [33], the following assumptions are made: Nitrogen is 
assumed to be inert, there are no external forces; viscous energy dissipation and radiative heat 
loss are neglected, and thermo-compression is not taken account.  

 
Figure 2. Schematics of this flame formed in 
counter flow 



Ning, C
 

Boundary conditions and parameters 

The length of the distance between walls is 20 mm, and longitude length is 33.4 mm. 
The number of grids is 301  181, and the mesh size is about 0.05 mm. We prescribe the fol-
lowing boundary conditions:  

The BC1-inlet: At the top and bottom walls, the inflow boundary is constant velocity 
boundary condition for flow, and hydrodynamic condition for temperature and concentration. 
The velocity, U0 = 0.2 m/s, temperature, T0, is room temperature (T = 300 K), and concentra-
tion are those of unburned mixture. We assume constant mass fraction 

3 8C H ,in 0.037Y  , 
2O ,in 0.2245Y   and 

2N ,in 0.7385Y  .  
The BC2-outlet: At the left and right sides of the reaction zone, we assume zero-

gradient boundary condition.  

 (x) (x )k k xf f    (39) 

The simulation starts with the initial conditions:  
u = 0, Yk = Yk.in for all species; T0 = 300 K for every-
where except the center, Tcenter = T = 1200 K, 0 = 1.  

In LB model the non-dimensional inlet velocity 
and density are 0.1 and 1, respectively. Other parame-
ters used in the calculation are shown in tab. 1 [33]:  

Numerical results and discussion 

Case 1. Binary diffusion flow 

In this case, the model is tested for binary diffusion problems, the LB method results 
are compared to computations from [32]. The multi-component Boltzmann equation in the 
reference includes multiple collision terms accounting for inter-species interaction, using ap-
propriate relaxation parameters, this model is shown to reproduce the Maxwell-Stefan equa-
tion for species diffusion. The equations are spatially discretized with a second-order central-
difference scheme and temporally with a first-order scheme. In present model, binary Max-
well-Stefan diffusivities can be calculated by:  

 , 1 2( , ) ( , )i j i jD D i j D i j n    (40) 

where D1(i, j) and D2(i, j) are species-dependent coefficients and ni+j denotes the combined 
number density of species i and j. Figure 3 shows the density profile of each species at  
t = 0 ms, 0.044 ms, 0.088 ms, and 0.0176 ms, the results from the LB model and the reference 
compare well and the error is less than 1% at all locations and times. Therefore, this model 
was shown to reproduce the correct macroscopic hydrodynamic equations. 

Then we simulate two gases with a molecular weight ratio of 2 diffusing into each 
other. Figure 4 shows the density profile for each species at t = 0 ms, 0.02 ms, 0.05 ms, and 
0.1 ms for both the reference and present computations. The results compare well with less 
than 1% error at all locations and times. 

Case 2. Counter-current propane/air reacting flow 

First, we show the flow field where counter-current reacting flow flames are formed. 
Pressure waves appear in the numerical domain at the beginning of the simulation. In order to 
get a steady-state solution, the simulation must be pursued for many iterations. Figure 5  

Table 1. Parameters used in counter-

current propane/air reacting flow case 

kov 9.9·1013 (cm3/mols) 

E 30 kcal/mol 

v 1.6·10–5 m2/s 

Q 2.05·106 J/mol 

k 2.2·10–5 m2/s 

Cp 1.01·103 J/kgK 
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Figure 3. Binary mixture diffusion results at 
different times compared to data taken from [32] 

 
Figure 4. Density profile for binary diffusion of two 
species with molecular weight ratio of 2/1 at 

different times compared to data from [32] 

shows the distribution of velocities of vx at y = Lv/2 and vv at x = Lx/2, respectively. The veloci-
ty is normalized to the inlet velocity at the wall, U0. The velocity profile agrees very well with 
the results obtained by Yamamoto’s model [33] and the results of Hosseini et al. [34]. The 
flow field is well simulated in the case of counter flow. Yamamoto et al. [33] solved the advec-
tion diffusion equation only for the species involved in the reaction and the Fick approximation 
were absorbed into the diluting species. In [34], a modified model taking account the correc-
tion velocity was run in order to clarify the effect of each modification onto the original advec-
tion diffusion scheme. In our study, a finite discrete velocity model is derived to solve the flow 
field. Under the assumption of a diluted flame, the results are perfectly matched.  

 
Figure 5. Distributions of non-dimensional velocities: (a) x-component along vertical centerline and  
(b) y-component along horizontal centerline compared to data from [34] 

Next, we examine the flame temperature. As seen in fig. 6, the maximum tempera-
ture is almost constant. As the center is approached, the temperature starts to increase at  
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y/Ly = 0.6, and steeply increases at y/Ly = 0.6-0.7. The reaction zone located in this region, 
where the large heat release occurs to cause the temperature increase. Then, temperature be-
comes constant in the burned gas region. The results obtained are agreement with the data 
from [33, 34]. This agreement was expected as all thermochemical properties employed in 
this case are fixed and homogeneous in space, therefore, they do not depend on local compo-
sition or temperature. Additionally, the flame is diluted, reducing the importance of density 
gradients and molecular diffusion.  

Figure 7 shows the mass fraction profiles when the reactive flow achieves the steady 
state. As seen in this figure, the reactants, C3H8 and O2, begin decreasing at the edge of pre-
heat zone, and react in the reaction zone to form the products, CO2 and H2O. Figure 8 com-
pare these results with those by Yamamoto et al. [33] and Hosseini et al. [34]. We see that the 
distributions of mass fraction profiles are matched.  

  
Figure 6. Distributions of non-dimensional temperature 
along vertical centerline compared to reference  

data from [33, 34] 

Figure 7. Mass fraction of species along 
vertical centerline 

The overall structure of the velocity field along with the velocity profile on the ver-
tical centerline is represented in fig. 9. As shown in fig. 10, the fine structure of counter-flow 
flame is observed. At the flame stagnation position, the reaction rate reaches its peak value. 

Conclusion 

In the context of the present study, a developed LB code for multi-species reacting 
flows was analyzed. A fully discrete LB scheme is derived by integration along the character-
istics. The binary diffusion cases demonstrated the capabilities of the model and its boundary 
conditions. The performance of this model is excellent and maintain the computational ad-
vantages of the standard LB method. An propane/air reacting flow involving five species has 
been computed with the resulting solver, the LB results show excellent agreement compared 
to a classical reference solution obtained by finite differences. The next step would be to ex-
tend it to fully dilatable flows. Error terms in both the flow field and passive scalar transport 
equations would have to be taken account. 
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Figure 10. Reaction rate for the counter-flow 

propane/air configuration 
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