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In this paper, we conduct the comparative analysis of two neural network 
approaches to the problem of constructing approximate neural network solutions 
of non-linear differential equations. The first approach is connected with building 
a neural network with one hidden layer by minimization of an error functional 
with regeneration of test points. The second approach is based on a new 
continuous analog of the shooting method. In the first step of the second method, 
we apply our modification of the corrected Euler method, and in the second and 
subsequent steps, we apply our modification of the Störmer method. We have 
tested our methods on a boundary value problem for an ODE which describes the 
processes in the chemical reactor. These methods allowed us to obtain simple 
formulas for the approximate solution of the problem, but the problem is special 
because it is highly non-linear and also has ambiguous solutions and vanishing 
solutions if we change the parameter value. 
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Introduction 

When you model real objects, you typically encounter two main types of fallacies. 

The first type of fallacies is an inaccurate description of the modeled object by differential 

equations and additional (initial, boundary, etc.) conditions. The second type of errors is an 

approximate numerical solution of the equations used. At the moment the main attention in 

the works on mathematical modeling focused on the second type. When we model complex 

processes in real objects, the errors of the first type are usually more important because they 

are more difficult to track and correct. 

In this regard, we set ourselves the task of building and developing methods to 

create a range of approximate functional solutions of differential equations. These solutions 

should allow for the possibility of refinement according to monitoring data of the object. The 

complex of our methods for constructing approximate neural network solutions is described 

and tested on a variety of problems for ODE and PDE, [1-7]. In particular, methods of 

adjusting models to new data are presented.  
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Our approach differs from others (see [8] and the literature cited there). Because it 

allows to: build parametric solutions, periodic regeneration of test points and some other 

useful features. However, our approach [1-7] has certain disadvantages. The main one is a 

long learning period. In this paper, we conduct a comparative analysis of this approach [1-7] 

and our new approach [9-11], which allows us to construct approximate neural network 

solutions of similar accuracy with considerably fewer neuro elements. We give this analysis 

on the example of the chemical reactor problem [5]. 

Formally, the problem is written in the form of a nonlinear differential equation with 

boundary conditions: 

2

2

d d
exp( ) 0,   (0) 0,   (1) 0
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y y
y y

xx
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This problem is solved by a standard method of lowering the order [12]. The 

peculiarity of the problem is the lack of an accurate solution for parameter values 
* 0.878458   . 

The classical methods for solving such problems [12, 13] are not always easy to 

apply, and when we solve problems of this type, these methods lead us to a series of 

problems. So, in work [14] we have an example of non-uniqueness of the stationary 

combustion mode, as well as a jump-like transition from one mode to another during 

combustion of condensed systems. We also encounter problems when we apply the method of 

matched asymptotic expansions [15]. The application of asymptotic methods to problems of 

this type proved to be difficult, and the results in many cases were not satisfactory: for 

example, in the article [16] it was necessary to impose additional requirements of the 

approximation uniformity, in the absence of which the authors receive a contradiction to the 

condition of non-uniqueness. 

Material and methods 

We consider the Cauchy problem for a system of homogeneous differential 

equations: 
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on the interval 
0 0[ ; ]D x x a  , here we enter a vector py and a mapping 1: p p f . 

When we solve a problem of eq. (2) using classical methods, the segment D is split into n 

parts: 
0 1 1 0... ...k k nx x x x x x a        , and we apply some iterative formula of the 

form: 

1 1( , , , , )k k k k kA h x y f y y            (3) 

where 
1k k kh x x  , yk is an approximation to the exact value of the required solution y(zk), A 

is a function that defines the method we use. 

Our approach [9-11] is to use the eq. (3) to construct an approximate solution of the 

problem (1) on the interval 0[ ; ]x x  with a variable upper limit 0 0[ ; ]x x x a  . In this case, 

steps and constructed approximate solutions become functions ( )k kh h x , ( )k k xy y , 

0 0( )x y y . In the simplest case of uniform splitting the interval, we obtain 0( ) /kh x x n  , 

0 /kx x xk n  . As an approximate solution of the original problem (1) we propose to use 
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( )n xy . If we use an explicit method, i. e., in eq. (3) the function A does not depend on the 

approximation 1ky , then the recurrent eq. (3) allows us to calculate the approximate solution
( )n xy as an explicit function. If the function A depends on the approximation 1ky , the 

relation (3) can be considered as an equation concerning the approximation 1ky . This 

equation may admit an exact solution, then instead of the eq. (3) we obtain the relation of the 

form: 

1 ( , , , )k k k kB h x y f y            (4) 

Equation (4), as before, allows us to calculate the approximation ( )n zy  and use it as 

an approximate solution of problem (1). If it is not possible to solve the eq. (3) exactly 

concerning the expression 1ky , then we can use some approximate method (like Newton's 

method) or a specially trained neural network to obtain a formula of the form (4). 

The most common complication of the problem (2) is the boundary value problem, 

which has the form: 

  0 0 0 0( ) , ( ) ,   ( ) ,   ( a)x x x x x    y f y y y y y                (5) 

this type also includes the problem (1). 

Here the vectors ,y y are made up of the co-ordinates of the vector y, their total 

dimension is equal to the dimension of the vector y. The boundary value problem can be 

reduced to a problem with a parameter like: 

  0 0 0( ) , ( ) ,   ( ) ,    ( )z x x x x   y f y y y y μ             (6) 

The vector y  contains the co-ordinates of the vector y, which are not included in the 

vector y . Equations (3) and (4) allow building the multilayered solution of a problem (6) 
( , )n xy μ : from the conditions at the right end we can get the equation 0 0( a, )n x  y μ y . 

Solving this equation, we find the parameter μ. Our approach can be viewed as a functional 

variant of the shooting method. We use it further in solving the problem (1). 

An essential feature of the problem (1) is that it has a parameter, δ. This feature of 

the problem does not make our approach much more difficult. In this situation, the parameter 

will be included in recurrent eqs. (3) and (4), and we will get an approximate solution of the 

form ( , , )n x y μ . The condition on the right end will be written in the form: 

0 0( a, , )n x  y μ y          (7) 

Thus, the problem boils down to find from eq. (7) the dependence of the form ( )μ . 

Next, we present the results of the method with the steps of the same length. In the first step, 

we apply the corrected Euler method [13] 2( , , ,1) exp( ) / 8y x p p x p   , we have 

designated the only co-ordinate of the vector μ through p. In the following steps, we use the 

Störmer method: 
2

( , , , )( , , , 1) 2 ( , , , ) ( , , , 1) e ,   1,... ,    ( , , ,0)
4

y x p kx
y x p k y x p k y x p k k n y x p p
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
           

As a result, we obtain the function ( , , ) ( , , , )ny x p y x p n   as an approximate 

solution to the problem. The parameter p we find from the condition on the right end: 

(1, , ) 0ny p                    (8) 
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We are looking for an approximate solution of this equation in the form of neural 

network decomposition: 

1

( ) ( , )
N

i i

i

p c v 


 a         (9) 

As the base neuro elements, we use the function such as: 

 ( , , ) ,   1,...,i i i iv a b th a b i n    . 

The weights of the neural network are linearly incoming parameters ci and non- 

-linearly incoming parameters ai, bi. They are determined in the process of learning the 

network based on minimization of an error functional. This process involves a residual in 

satisfying the condition (8): 
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For 2n   we obtain an approximate solution of the form: 
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For 3n  we get a more complex formula: 
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As the number of layers increases, we obtain similar but more complex formulas. 

Results and discussion  

We compare methods of this work with methods of the article [5] for 100 neurons 

without additional data. At the same time, the neural network is trained on the interval 
[0.1;1]  . We have given results for the values of the parameter, δ = 0.2 and δ = 0.8, figs. 1-8. 

 

 

 

 

Figure 1. Graph of approximate solution, which 

is constructed by applying the methods of the 
article [5] for 100 neurons without additional 
data, and the exact solution of the problem for 
the values of the parameter δ = 0.2 

Figure 2. Graph of approximate solution, which 

is constructed by applying the methods of the 
article [5] for 100 neurons without additional 
data, and the exact solution of the problem for 
the values of the parameter δ = 0.8. 



Shemyakina, T., et al.: Comparison of Two Neural Network Approaches to … 
THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 2, pp. S583-S589 S587 

The method which is based on the application of eqs. (3), eq. (8) has given results: 

For n = 2 and neural network (9) composed of 5 neurons. 

 

 

 

For n = 3 and neural network (9) composed of 15 neurons. 

 

 

 

 

For n = 4 and neural network (9) composed of 30 neurons: 

 

 

 

 

Figure 3. Graph of approximate solution 
y2(x,δ,p) and the exact solution of the problem 

for the values of the parameter δ = 0.2 

 

Figure 4. Graph of approximate solution 
y2(x,δ,p) and the exact solution of the problem 
for the values of the parameter δ = 0.8 

Figure 5. Graph of approximate solution 
y3(x,δ,p) and the exact solution of the problem 
for the values of the parameter δ = 0.2  

 

Figure 6. Graph of approximate solution 
y3(x,δ,p) and the exact solution of the problem 

for the values of the parameter δ = 0.8 

Figure 7. Graph of approximate solution y4(x,δ,p) 

and the exact solution of the problem for the 
values of the parameter δ = 0.2 

Figure 8. Graph of approximate solution 

y4(x,δ,p) and the exact solution of the problem 
for the values of the parameter δ = 0.2 
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Conclusion 

The methods that we have considered in this paper allowed us to obtain simple 

formulas for the approximate solution of problem (1). These formulas are considerably 

simpler than those which were obtained by the methods of [5]. The accuracy of the method, 

which is based on the corrected Euler method and the Störmer method for n = 2, is acceptable 

for the parameter values, δ, and far from critical. When we approach the critical value of the 

parameter, the quality of the solution slightly deteriorates. The accuracy of the method at 

n = 3 is significantly higher near its critical parameter values. An even more accurate solution 

can be obtained if we increase the number of layers n and the number of neurons in the 

network (9). But at the same time, the complexity of the formulas will rapidly increase and 

their specification according to experimental data becomes complicated. Considered a model 

problem supports the conclusion that the layered methods provide an opportunity to build 

more simple models without losing accuracy, which simplifies their use and the parameters 

are the input variables. 
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