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The paper deals with a parameter identification problem for creep and fracture 
model. The system of ordinary differential equations of kinetic creep theory is 
applied for describing this model. As for solving the parameter identification 
problem, we proposed to use the technique of neural network modeling, as well 
as the multilayer approach. The procedures of neural network modeling and mul-
tilayer approximation constructing application is demonstrated by the example of 
finding parameters for uniaxial tension model for isotropic steel 45 specimens at 
creep conditions. The solution corresponding to the obtained parameters agrees 
well with theoretical strain-damage characteristics, experimental data, and re-
sults of other authors. 
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Introduction 

In recent years, there is an increasing need for the description of deformation and 

fracture processes in complex temperature-power regimes for materials with complicated rhe-

ological characteristics including viscosity. These problems find wide application in different 

fields of science and technology, e. g. mechanical engineering and aerospace industry. Special 

attention is paid to the possibility of creep accounting at high and moderate temperatures for 

metal and composite structures. However, up to now, there has been no common approach to 

the description of this phenomenon, and there are dozens of various creep theories and their 

modifications, e. g. the aging theory, the hardening theory, the heredity theory, and the 

Rabotnov theory of structural parameters. It is not usually possible to reliably determine 

which of the theories is better to use in a particular case. Applying equations of any theory 

may be a very complex process, as equations used usually contain several material constants 

(creep characteristics), which complicated to obtain. In other words, these parameters can be 

determined by using information about a deformation process. A primary source of infor-

mation is an experiment. Creep characteristics may depend on the type of used material and 

its condition, regime of loading, temperature, type of anisotropy, and other factors. Problems 

of their identification are very complicated. All these reasons indicate the need for a common 
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approach to determining the parameters of models for various equation types. This paper pro-

vides a unified method for identifying parameters of models describing creep and fracture 

processes of structures. The method considered involves the use of experimental data. The 

principles and the techniques of neural network modeling, as well as the multilayer approach, 

are adopted as a basis for the approach developed in the work. 

Problem statement 

To describe the behavior of metals under creep conditions up to the fracture moment 

we use the system of the Rabotnov theory of structural parameters ODE in the form [1, 2]: 

1 2

d d
( , )Ψ( , ), ( , )Ψ( , )

d d
f T T f T T

t t

 
         (1) 

where ε is the creep strain, ω – the scalar damage parameter, σ – the stress, t – the time, and T 

– the temperature. Functional relationships in the eq. (1) are determined by experimental data. 

The function Ψ( , )T  may be chosen in the form [2]: 

 1Ψ( , ) 1
m

T    


                  (2) 

where α and m are model parameters that can depend on the temperature, T, in a general case. 

Considering the eq. (2) and constant temperature, we get: 
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The functions 1( )f   and 2 ( )f   we choose in the power form [2]: 

1 2( ) ,    ( )n kf B f B       

where ,   ,   ,  B B n k   are creep characteristics. 

As the initial conditions for the system of eq. (3) we use: 

(0) 0,   (0) 0            (4) 

If 0 const   , we can also get the solution of the Cauchy problem (3)-(4) in the 

same way as it is done in the article [3]: 
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Considering that the damage parameter is equal to the unit at the fracture moment, 

from the eq. (5), we obtain the value of long-term strength t* of this construction: 

1
*

0( 1)( 1) kt m B 


    
              (7) 

In the paper, neural network and multilayer approaches are used for the solution to 

the identification problem of creep model parameter for the uniaxial tension of isotropic 

aviation steel 45 cylindrical specimens at the constant temperature T = 850 C.  
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Numerical results 

In the case when stress is independent of creep strain and time, the solution of prob-

lem of eqs. (3) and (4) reduces to solving the Cauchy problem for the differential equation: 
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with initial condition: 

(0) 0                    (9) 

The creep strain can be found by eq. (6) using the solution of problem (8)-(9). 

Euler method  

We apply our modification of the Euler method [4] to construct an approximate so-

lution to the problem (8)-(9) [5-9]. For this purpose, we use the recurrence formula: 
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where 0,..., 1i N  . We determine the initial function by condition 
0 0( 0.5) .t t   Step sizes 

are chosen from the condition 0.5 ( 0.5) .i i N     As an approximate solution of the prob-

lem we shall use ( ).Nt t   From eq. (10) we obtain: 

1( ) ( ) ( 0.5)S ( )i i it t a                     (11) 

where 
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Summing over i , we obtain: 
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Substituting the initial value, we have 1
00 0.5 S (0)N

i it a 
  , whence: 

1 1

0 0

0.5 S (0) ( 0.5) S ( )
N N

i i

i i

t a  
 

 

 
   

 
   

Material constants α, m, and a are obtained using ordinary least squares method and 

the experimental data, q, tq: 
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On the figs. 1 and 2, we present the results of the calculations for 6.N   

The values of the error functional are for the exact solution  0.332J   and the ap-

proximate solution 84 0.2J  , i. e. the approximate solution corresponds to the experimental 

data is somewhat better than the exact one. Analysis of the graphs shows that this correspond-

ence is valid for all experimental points, except for three. 
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The trapezoidal rule 

We apply our modification [5-9] of the trapezoidal rule [4]. For this purpose, we use 

the recurrence formula: 
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where 0,..., 1.i N   The initial function and step sizes are chosen in the same way as be-

fore. 

From eq. (13) we obtain: 
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where 1
20.5 ( ).m ma N f       

Summing over i , we obtain: 

1

0 0

1

( 0.5) 2 S ( ) S ( ) S ( )
N

i N

i

t t a    




 
     

 
  

Substituting the initial value, we have 1
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Through substitution and simplifying, we get: 
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Figure 1. A graph of the exact solution of the 

Cauchy problem t(ω) and an approximate neural 
network solution tp(ω); material constants obtained 
by the ordinary least squares method; circles 

correspond to the experimental values 

Figure 2. A matching error between the 
experimental data and the exact solution t(ω) of 

the Cauchy problem (squares), as well as between 
the experimental data an approximate solution 
tp(ω) (circles) in the case N = 6; neural network 

weights obtained by the ordinary least squares 
method 
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Material constants α, m, and a are obtained using ordinary least squares method and 

the experimental data: 
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The advantage of this approach in comparison with the artificial neural networks is 

that the same parameters are chosen as for the exact solution of the eq. (8).  

On the figs. 3 and 4, we present the results of the calculations for 2N  . 

For this case, the value of error functional for the approximate solution is equal to 

0.185, which is significantly less than for the exact solution. From the analysis of the graphs, 

it can be seen that the exact and approximate solutions practically coincide on the whole in-

terval, except for the initial area, on which the approximate solution is much better corre-

sponds to the experimental data. 

On the figs. 5 and 6, we present the results of the calculations for 3N  . 

For this case, the value of error functional for the approximate solution is equal to 

0.197. The analysis and results in this case are similar to those indicated in the previous para-

graph. 

An increase in the number of neurons does not lead to an increase in the accuracy of 

the correspondence to the experimental data. 

Neural network approach 

The first method will compare to a neural network approach [10, 11]. We will find a 

solution in the form of a neural network approximation: 
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Figure 3. A graph of the exact solution of the 

Cauchy problem t(ω) and an approximate 
neural network solution (15) tp(ω); material 
constants obtained by the ordinary least squares 

method; circles correspond to the experimental 
values 

Figure 4. A matching error between the 

experimental data and the exact solution t(ω) of the 
Cauchy problem (squares), as well as between the 
experimental data an approximate solution (15) 

tp(ω) (circles) in the case N = 2; neural network 
weights obtained by the ordinary least squares 
method 
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where neural network weights are linear input parameters ci and non-linear input parameters 

ai as well as material constants α, m, and a. These parameters will obtain in the process of 

learning the network as minimizing the error functional: 
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We choose a function of the sigmoid type ( , ) ( )i th a b   a  as a neural network 

activation function. 

On the figs. 7 and 8, we present the results of the calculations for 1N  . 

 

 

 

 

 

 

 

 

The value of error functional for the approximate solution is equal to 0.181, which is 

significantly less than for the exact solution. 

Figure 5. A graph of the exact solution of the 

Cauchy problem t(ω) and an approximate 
neural network solution (15) tp(ω); material 
constants obtained by the ordinary least 

squares method; circles correspond to the 
experimental values 

Figure 6. A matching error between the 

experimental data and the exact solution t(ω) of 
the Cauchy problem (squares), as well as 
between the experimental data an approximate 

solution (15) tp(ω) (circles) in the case N = 3; 
neural network weights obtained by the 
ordinary least squares method 

Figure 7. A graph of the exact solution of the 
Cauchy problem t(ω) and an approximate 

neural network solution (one neuron and 
neural network weights obtained by the 
ordinary least squares method); circles 

correspond to the experimental values 

Figure 8. A matching error between the 
experimental data and the exact solution of the 
Cauchy problem (squares), as well as between the 

experimental data an approximate neural network 
solution (circles) in the case of one neuron (neural 
network weights obtained by the ordinary least 
squares method) 
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On the figs. 9 and 10, we present the results of the calculations 2N  . 

 

 

 

 

 

 
 
For this case, the value of error functional for the approximate solution is equal to 

0.0575, which is significantly less than for the exact solution. From the analysis of graphs, it 

can be seen that at the entire interval the approximate neural network solution is much better 

corresponds to the experimental data. 

A further increase in the number of neurons does not lead to an increase in the accu-

racy of the correspondence to the experimental data. 

Conclusion 

Comparative testing of two methods for constructing approximate solutions 

concerning differential equations and experimental data is carried out. The first method (mul-

tilayer approach) allows building approximate solutions that better satisfy to experimental 

data than the exact solution with the same set of material constants. The second method (neu-

ral network approach) allows building approximate solutions which even better corresponding 

to the experimental data, that the first method, but requires the definition of a larger number 

of constants. 
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