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This work is about studying the natural convection of 3-D steady-state non-New-
tonian power law fluid numerically. The inner cylinder was put eccentrically into 
the outer one. The cylinders are held at constant temperatures with the inner one 
heated isothermally at temperature, Th, and the outer one cooled isothermally at 
temperature Tc (Th > Tc). The simulations have been taken for the parameters 
103 ≤ Ra ≤ 105, 10 ≤ Pr ≤ 103, 0.6 ≤ n ≤ 1.4, and 0 ≤ ɛ ≤ 0.9, and an inclination an-
gle, ϕ, from 0° to 90°. The average Nusselt numbers for the previous parameters 
are obtained and discussed numerically. The results revealed that the average 
Nusselt number has the highest values when n = 0.6, Ra = 105 at ϕ = 0 which is a 
signal for the large transfer herein and has the lowest values for n = 1.4, Ra = 103, 
at ϕ = 90° which is a signal that the transfer is by conduction more than convec-
tion. Furthermore, the increasing of eccentricity causes an increase in the Nusselt 
number for all the cases. Finally, the best case where we can get the best heat 
transfer is at ϕ = 0, ɛ = 0.9 among them all. The results have compared with some 
precedent works and showed good agreement. 
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Introduction 

In fluid dynamics, the Taylor-Couette flow consists of a viscous fluid confined in the 

gap between two rotating cylinders. For low angular velocities, measured by the Reynolds num-

ber, the flow is steady and purely azimuthal (when the cylinders are stationaries there is a nat-

ural convection measured by the Rayleigh number). It has many technical apparatus like 

scraped surface heat exchangers, shear crystallizers because of its unique flow characteristics, 

desalination, MHD and also in viscosimetric analysis.  

Natural convection between two eccentric cylinders has been one of the subjects of 

many researchers in the last few years due to its importance in many engineering applications 

such as solar collectors, nuclear reactors, cooling of electronic systems, and heat exchangers. 

One of the earliest works in this field was done by Mack and Bishop [1], they studied the issue 

of natural convection in a concentric annulus at low Rayleigh numbers (less than or equal 103) 

and radius ratio 1.15 ≤ Ro/Ri ≤ 4.15 and represented the temperature variables and stream func-

tion. Kuehn and Goldstein [2] investigated the issue of natural convection in a concentric and 

eccentric cylindrical annuli. They performed experimental and numerical studies of the problem 
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and their results are used to validate most of the numerical works nowadays. Char and Lee [3] 

studied the natural convection of micropolar fluids in a horizontal eccentric annulus numeri-

cally. They figured out that the inversion parameter and the eccentricity have a strong effect on 

the flow structure and heat transfer rate.  

Kim et al. [4] studied the natural convection of power law fluid in an enclosure in the 

presence of magnetic field. They demonstrated that the power law index, n, largely influences 

the heat and mass transfer and average entropy generation. Naimi et al. [5] carried out a study 

for the steady-state buoyancy driven flow of a non-Newtonian power law fluid in a rectangular 

horizontal annulus where it was heated from below. The effects of Prandtl and Rayleigh num-

bers, the power law index, n, and aspect ratio on the stream function and Nusselt number are 

investigated. Sakr et al. [6] carried out experimental and numerical studies on natural convec-

tion in a gap between two cylinders formed by a constant heat flux, the inner (elliptic) horizontal 

cylinder was put concentrically into a larger isothermally cooled horizontal cylinder. The sim-

ulations covered ranges of 1.12·107 ≤ Ra ≤ 4.92·107, orientation angle of the elliptic tube 

0° ≤ ϕ ≤ 90° and hydraulic radius ratio 1.5 ≤ Ro/Ri ≤ 6.4. The numerical results compared with 

the experiment ones and showed good agreement. 

The comparison between the convective transport by temperature and by heat flux in 

an annulus and in a cavity for power-law fluid was done by [7, 8], respectively. Their results 

indicated that the increase in the transfer rate is greater when the convective transport is by heat 

flux rather than the Rayleigh number based on the same temperature difference; However, for 

large diameter ratios (RR ≥ 10) the heat transfer rates are the same for both types of heating. 

Abu-Nada, et al. [9] studied the heat transfer in horizontal annuli using Cu-, Ag-, 

Al2O3- and TiO2-water nanofluids with different volume fractions. They found that the 

nanofluid type and volume fraction have too much effect on the heat transfer characteristics at 

high Rayleigh numbers and big values of diameter ratio, but for intermediate values of Rayleigh 

number, the nanofluid has low solid thermal conductivity which caused a decrease in heat trans-

fer rate. The effect of an inclination angle on natural convection [10, 11] power-law fluid [12] 

in a square enclosure has been investigated. The authors presented isotherms and streamlines 

of the vorticity-stream function procedure, effects of the various parameters on the average 

Nusselt number and they accomplished a correlation of the Nusselt number based on the gov-

erning parameters as well. Parvin et al. [13] studied the steady-state free convection of  

Al2O3-water nanofluid in an annulus using Chon and the Maxwell Garnett models to estimate 

the heat transfer enhancement in the annulus. They found out that the heat transfer developed 

better by increasing the nanoparticles volume fraction and Prandtl number at moderate and large 

Grashof number for both models but the greatest heat transfer rate is found for the Chon model. 

Chhabra et al. [14] carried out a simulation of the free convection heat transfer of Bingham 

fluid in horizontal concentric cylinders under the conditions of 102 ≤ Ra ≤ 106, 30 ≤ Pr ≤ 100, 

and 0 ≤ Bn ≤ 104. They represented isotherms and streamlines contours for the numerical do-

main, local and average Nusselt numbers for the various parameters obtained and discussed as 

well. 

The effects of buoyancy driven flow on the Nusselt number for power-law fluid [15] 

and the analysis of unsteady-state natural convection [16, 17] and the mixed convection over 

square cylinders [18, 19] have been studied numerically. They found that the heat transfer rate 

of pseudo-plastic fluid is much higher than the Newtonian fluid and for dilatant fluid heat trans-

fer rate is less than the Newtonian one. Also, the Richardson number has an important role on 

the flow pattern and the heat transfer characteristics. Matin et al. [20] studied numerically the 

effects of the parameters Ra, Pr, aspect ratio, AR, eccentricity, ɛ, and power law index, n, on the 



Benhizia, O., et al.
 

natural convection of non-Newtonian power law fluid in two eccentric square ducts. They pre-

sented streamlines, isotherms and Nusselt numbers for the previous parameters, they proved 

that the Nusselt number is high when index n is low and vice versa, Prandtl number has almost 

no effect on the heat transfer characteristics. 

Alawi et al. [21] studied the natural convection of SiO2 nanofluid formed by constant 

heat flux horizontal inner flat tube concentrically had been put in cooled outer horizontal cyl-

inder. The study of free convection of Cu-water nanofluid in an odd shaped cavity and in a gap 

of two heated confocal elliptic cylinders was done by [22, 23], respectively. Effects of the pa-

rameters Ra, volume fraction and hydraulic diameter ratio on the average Nusselt number are 

discussed. The simulation of the natural convection inside a cavity of two isothermal horizontal 

walls and two adiabatic side walls of power law fluid [24] and nanofluids [25, 26] has been 

studied in the past few years. The authors introduced a correlation for the mean Nusselt number 

vs. the Rayleigh number, Prandtl number, the power law index, and nanoparticles volume frac-

tion. The influence of buoyancy on heated cylinder at mixed convection for Bingham plastic 

fluid [27] and effects of variable viscosity property of Al2O3-water nanofluid [28, 29] on the 

heat transfer characteristics are studied numerically. The results said when increasing Re, Pr, 

Bn, Ri, the momentum and thermal boundary-layers become thinner over the cylinder. Also, the 

pressure coefficient, the drag coefficient, the volume fraction and the mean Nusselt numbers 

are discussed. Another important geometries are: 

– A square domain (porous cavity) heated by a triangular thick wall [30, 31] filled with 

nanofluid and a triangular wall with an opening from the top [32]. These studies presented 

isotherms and streamlines for different parameters such as Rayleigh number, wall thick-

ness, nanoparticles volume fraction… and their influences on the Nusselt numbers. 

– An enclosure of wavy walls is being studied for natural convection [33] and mixed convec-

tion [34]. Both papers showed the maps of heat transfer in the numerical domain as iso-

therms and streamlines and revealed that the amplitude of the wavy walls largely affects 

the heat transfer and fluid-flow. 

From the mentioned literature, the natural convection of non-Newtonian power law 

fluids in square ducts and in a gap between two concentric cylinders has been investigated. Yet 

there is no study related to the natural convection of power law fluids in eccentric gaps. Since 

the natural convection inside eccentric cylinders has many engineering applications using ro-

tating machinery components covering co-axial rotating heat pipes, cylindrical bearings, rotat-

ing membrane filters and there is lack in studying the flow in the basic of stationary cylinders 

such as bundled cylinders at offshore installation, risers, tube bundles in heat exchangers and 

mooring lines with the non-Newtonian fluids are more effective than the Newtonian fluids as 

we previously mentioned. An effort has been made to investigate the natural convection of  

non-Newtonian power law fluids in eccentric cylinders at different angles numerically for the 

parameters 103 ≤ Ra ≤ 105, 10 ≤ Pr ≤ 103, 0.6 ≤ n ≤ 1.4, and 0 ≤ ɛ ≤ 0.9, and an inclination an-

gle, ϕ, from 0° to 90°. 

Problem formulation 

The schema of the physical domain of the present problem is shown in fig. 1. The 

inner eccentric cylinder is of radius Ri and the outer one is Ro. The flow is considered 2-D 

steady-state and the convection is laminar, the fluid is incompressible non-Newtonian power 

law fluid and the cylinders are eccentric. The internal wall of the inner cylinder is heated uni-

formly at constant temperature Th while the outer one cooled isothermally at temperature Tc 

(Th > Tc). 
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We confess that the positive trend of the eccen-

tricity is toward the bottom of the outer cylinder 

and the inner cylinder is able to be moved by an 

angle ϕ. Because of the temperature difference, 

a buoyancy induced flow results and the natural 

convection takes place within the power law in 

the gap. The Boussinesq approximation is used 

to calculate the buoyancy forces in the radial and 

angular directions. The equations that govern 

our flow are continuity, momentum and energy.  
These equations are: 
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These equations are used for the following boundary conditions: 

 R = Ri      u = v = 0      T = Th (5) 

 R = Ro      u = v = 0      T = Tc (6) 

 ϕ = 0       u = v = 0      
𝜕𝑇

𝜕𝑅
 = 0 (7) 

 ϕ = 2π      u = v = 0      
𝜕𝑇

𝜕𝑅
 = 0 (8) 

The temperature when the fluid properties are taken is at Tf = (Th + Tc)/2. 

The apparent viscosity for a power law fluid in the Cartesian co-ordinate is:  
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The previous form of the viscosity is the most common and the easiest one to simulate 

the viscosity with, where µa is the apparent viscosity of the power law, K – the consistency 

parameter, and n – the power law index. The n is the responsible for the type of fluid with n = 1: 

Newtonian fluid, the Newtonian fluids have a dynamic coefficient of viscosity K, n ≤ 1: the 

fluid is pseudo-plastic fluid, and n ≥ 1: the fluid is dilatant fluid. 

The Rayleigh and Prandtl numbers are: 
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Figure 1. Description of the physical problem 
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where Ra represents the ratio of the strengths of thermal transport due to buoyancy to thermal 

conduction, and Pr represents the ratio of the viscous boundary-layer to thermal boundary-layer 

thicknesses. For power law fluids, the viscosity is varying with the flow so we need to put a 

reference viscosity, μref, which was mentioned in eqs. (4), (9), and (10). This viscosity is defined 

based on a characteristic shear rate, γ, which itself can be scaled as γ = uscale/L. This scaled 

viscosity is uscale = α/L. 
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The previous equation is used for analyzing the natural convection as a representative 

value, but with the velocity scale we are able to write Rayleigh and Prandtl numbers as functions 

of the quantities g, β, K, ρ, α, k, and L. 

 
2 2 1 2 2

2

g
Ra , Pr

n n

n n

TL KL

K

 

 

 




   (12) 

The local and mean Nusselt numbers are: 
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Numerical approach and procedure 

The previous governing equations which are applied for their boundary conditions 

were numerically solved using ANSYS-CFX package version 16. This commercial code is able 

to solve the differential equations by converting 

them into algebraic equations using finite vol-

ume method (FVM), the SIMPLE algorithm 

which introduced by Patankar [35] was used for 

these equations and the second order upwind 

schemes were used to reduce the numerical er-

rors. The steady laminar model was used for all 

the simulations. The grid system is uniform in 

the angular direction but not uniform in the ra-

dial direction. It’s thicker near the inner and 

outer surfaces of the cylinders as the fig. 2 illus-

trates. It is expected that the solution converge when the residuals of continuity and momentum 

are less than 10–9 and the residuals of energy is nearly 10–6. 

Code validation 

To guarantee that our current data are in the right trail with the previous works, a 

validation test was conducted, and the results have been compared with some set of works 

which were performed on natural convection. The well reference of natural convection by Ku-

ehn and Goldstein [2] for the dimensionless temperature, Abu-Nad et al. [9] and Matin and 

Khan [15] for Nusselt number vs. Rayleigh number. These comparisons are illustrated in the 

figs. 3-5. It is obvious that our results are congruous to theirs except for the numerical errors.  

 

Figure 2. (a) Schematic of the numerical 
domain, (b) Part of the numerical domain 
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Now, to deepen in the investigations, our results have been checked for the cases of 

pseudo-plastic and dilatant fluids (n < 1 and n > 1, respectively) with the ones of Turan et al. 
[24] and Matin and Khan [15]. Table 1 presents the comparison. 

 

Figure 3. Comparison between the present work 

for the dimensionless temperature and the results 
in [9] and [15] for e = 0, n = 1, RR = 2.6,  
Ra = 4.7·104 and Pr = 0.706 

 

Figure 4. Comparison between the present work 

for the Nu and the results in [9] and [15]  
for e = 0, n = 1, RR = 2.5, and Pr = 0.7 

 

Figure 5. Comparison between the current data  

of the Nu and the results in [2] and [15]  
for e = 0, n = 1, RR = 2.6, and Pr = 0.7 

Table 1. Comparison of the average Nusselt 
number between our work (current data) and the 
results in [24] and [15] 

 Ra 
Nu 

n = 0.6 n = 1.0 n = 1.4 

Current 
data 

104 5.69545 2.27263 1.34699 

105 12.4609 4.70245 2.42811 

 [15] 
104 5.76019 2.38638 1.35504 

105 13.06722 4.69312 2.28356 

 [24] 
104 5.70903 2.40512 1.35514 

105 12.98500 4.72576 2.28945 
 

Results and discussions 

The effects of buoyancy force (laminar natural convection) on the fluid-flow and the 

heat transfer characteristics are presented. Effects of Ra, Pr, ɛ, ϕ, and n on the average Nusselt 

number are examined as well. 
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Discussing the isotherms and streamlines 

Figures 6 and 7 represent isotherms and streamlines for the various parameters of Ra, 

Pr, n, and ε. These figures show the effects of the previous parameters on the flow field (thermal 

field). From the figures one can see that when ϕ = 0 the isotherms and streamlines are symmet-

ric about the y axis of the inner cylinder for all the cases. Also, there is a thermal plume around 

the inner cylinder and in the lower portion of the annulus the flow is stable and fully stratified 

in which we call a stagnant region where there is almost no heat transfer (in this region we 

cannot find any temperature contours and the flow does not recirculate in it) for all the cases. 

Moreover, one can see that when we increase the power law index n (from the shear thinning 

behavior to the shear thickening behavior) at the same values of Ra and Pr, the thermal plume 

 

Figure 6. Isotherms (up) and streamlines (down) 
for Pr = 100, ε = 0, for different values of n and  

Ra; Ra = 103 (first row), Ra = 104 (second row), 
Ra = 105 (third row)  

 

Figure 7. Isotherms (up) and streamlines 

(down) for Pr = 100, n = 0.6, ϕ = 0° for different 
values of ε and Ra; Ra = 103 (first row), 
Ra = 104 (second row), Ra = 105 (third row)  
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reduces which is a sign that pseudo-plastic fluids are better than the others in transferring the 

heat. At low Rayleigh numbers the flow pattern depends essentially on n (the patterns of iso-

therms for dilatant fluids are very close to those of the heat transfer by conduction). 

The figures also show the effects of Rayleigh number on the heat and flow field. It is 

evident that the thermal plume region extends with increasing the Rayleigh number and this 

means that the strength of buoyancy force is affected and consisted of the Rayleigh values. At 

low Rayleigh number the shape of isotherms for pseudo-plastic, Newtonian and dilatant fluids 

are virtually alike because the thermal transport occurs almost by conduction and the heat trans-

fer regime is by conduction more than convection. In addition, isotherms are parallel distributed 

to the cylinders (taking the concentric shape case) so natural convection is very weak compared 

with conduction. Also, one can see that the streamlines have weak values (here the effects of n 

can not be well seen, it might be seen clearly in dilatant fluids where their Nusselt number is 

very weak). When Rayleigh number gets bigger (Ra ≥ 104) conduction still the dominant for 

dilatant fluids but not anymore for the other fluids, isotherms move up toward the outer cylinder 

and change their shape becoming well spread not parallel distributed and for streamlines the 

main eddy moves upward to the outer cylinder (this phenomenon is clearly seen in pseudo-plastic 

fluids then the Newtonian then dilatant fluids which means that the fluid movement is rapid in 

pseudo-plastic fluids then the Newtonian and then dilatant fluids). When Rayleigh number gets 

to higher values (Ra ≥ 105) the natural convection takes place in the dilatant fluid, the main eddy 

starts to deform and change its shape from the bean shape to the stretch (airfoil) shape.  

In this part the effect of eccentricity is depicted and showed in fig. 7. From the figures 

it is obviously seen that the eccentricity has effects on heat transfer, the gap between the south 

part of the inner cylinder and the outer one becomes tighter and from here we may say that the 

fluid can not have liberty to circulate in this region. It is observed that when we raise the value 

of eccentricity the thermal plume augments at the same set of Rayleigh number, n, and ϕ. The 

eccentricity causes the flow in the down area (the flow below the inner cylinder) in which we 

know as the stagnant fluid to reduce giving away freedom to the thermal plume to spread and 

extend more and more which boosts the convective flow to become more intensive. This last 

one is bigger in the vertical case compared with the others because in this case it takes big part 

from the stagnant region and when we increase the angle, ϕ, the distance between the north part 

of the inner cylinder and the outer one (the thermal plume region) diminishes which causes the 

convective heat transfer to reduce. 

Effects of Rayleigh and Prandtl numbers, ε, ϕ, and n  

on the mean Nusselt number 

Figures 8-10 illustrate the variation of the average Nusselt number as a function of 

different set of parameters power law index, n, Rayleigh and Prandtl numbers, ɛ at ϕ = 0°, 45°, 

and 90°, respectively. From the figures one can see that when the power law index, n, gets 

bigger (from the shear thinning behavior to the shear thickening behavior) the curves of the 

Nusselt number go down which is a signal for the low heat transfer in this case. Also, it is 

observed that the Nusselt number for pseudo-plastic fluids is higher than that of the Newtonian 

and is higher than that of the dilatant fluids and this boosts the fact of pseudo-plastic fluids are 

better than Newtonian and dilatant fluids in cooling and heating purposes. Furthermore, one 

can see that the Nusselt number incredibly affected by the Rayleigh number because when 

Rayleigh augments all the curves of the Nusselt number go up which means that the Nusselt 

number depends on the Rayleigh number, this is because Rayleigh number strengthens the 

buoyancy force that results from the gradient in density (difference of density) and consequen- 
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Figure 8. Mean Nusselt number vs. power law index at ϕ = 0° for different parameters of Ra, ε, and Pr; 
Pr = 10 (first row), Pr = 100 (second row), Pr = 1000 (third row);  

1 – ε = 0.9, 2 – ε = 0.6, 3 – ε = 0.3, 4 – ε = 0  

tly, with decreasing n these effects become more pronounced, so the effect of convection in 

pseudo-plastic fluids are more evident than the others and at low Rayleigh num-bers conduction 

becomes the dominant mode of heat transfer. This phenomenon is clearly seen in dilatant fluids 

than the others and when Rayleigh number gets bigger (Ra ≥ 104) the effect of convection begins 

to appear. Then, the figures show that Prandtl number has almost no effect on the heat transfer 

(on the Nusselt number) this is because Prandtl number effects are more on the hydrodynamic 

boundary-layer thickness than the thermal boundary-layer thickness. Effects of Prandtl number 

can be a bit seen only for pseudo-plastic fluids at high Rayleigh numbers (Ra ≥ 105) but not for 

the other fluids so in this situation we can say that the Prandtl number affects only the viscous 

and thermal diffusion forces in the boundary-layer but does not affect the thermal boundary-layer 

thickness. We may deduce the Nusselt number is autonomous of Prandtl number. 

From the figures one can see that the Nusselt number affected by the eccentricity 

value. It is obvious that when the eccentricity increases the Nusselt number increases especially 

for pseudo-plastic fluids when n is very small (n ≤ 0.6) or dilatant fluids when n is very big 

(n ≥ 1.4) at low Rayleigh numbers. That is because the thermal plume gets more freedom to 

extend above the inner cylinder and the gap below the inner cylinder shrinks more (the space 
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Figure 9. Mean Nusselt number vs. power law index at ϕ = 45° for different parameters of Ra, ε, and 
Pr; Pr = 10 (first row), Pr = 100 (second row), Pr = 1000 (third row);  

1 – ε = 0.9, 2 – ε = 0.6, 3 – ε = 0.3, 4 – ε = 0 

where we can find the stratified fluid). Still, as Rayleigh is low the conduction is the dominant 

mode of heat transfer because the buoyancy force is too weak that can not let the thermal plume 

to spread. Another phenomenon needs to be explained here is when ϕ = 90° at low Rayleigh 

numbers the increase of eccentricity causes the heat transfer to reduce for pseudo-plastic fluids 

because the influence of eccentricity on heat transfer is greater than the buoyancy force except 

for the big values of eccentricity ɛ = 0.9 where the collision between the hot and cold fluid in 

the upright trend of the eccentricity from the gravity force is able to drive the buoyancy force 

and make it stronger. When Rayleigh gets bigger (Ra ≥ 104) the convection mode begins to be 

the driving mode of heat transfer and this effect starts to appear in dilatant fluids (n ≥ 1.4) in 

which the eccentricity causes them to reduce their resistances and overwhelmed all the fluids 

(pseudo-plastic, Newtonian and dilatant fluids) when Rayleigh is big enough (Ra ≥ 105) to pro-

duce a great buoyancy force.  

The figures also show the effects of angle ϕ on the heat transfer rate. From the figures 

one can see that when ϕ increases from the vertical orientation (ϕ = 0°) to the horizontal orien-

tation (ϕ = 90°) the values of the Nusselt number diminish which is a sign for diminishing the 

heat transfer here, these effects are clearly seen at low Rayleigh numbers (Ra ≤ 104) at ɛ = 0.9. 
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Furthermore, when Rayleigh is high (Ra ≥ 105) these effects become less strong especially be-

tween the cases ϕ = 45° and ϕ = 90°. So, one can deduce here that the best case of heat transfer 

occurs at ϕ = 0°. 

 

Figure 10. Mean Nusselt number vs. power law index at ϕ = 90° for different parameters of Ra, ε, and 
Pr; Pr = 10 (first row), Pr = 100 (second row), Pr = 1000 (third row);  
1 – ε = 0.9, 2 – ε = 0.6, 3 – ε = 0.3, 4 – ε = 0 

Conclusions 

The 2-D steady-state natural convection of non-Newtonian power law fluid has been 

analyzed numerically. The results have come from the parameters 103 ≤ Ra ≤ 105, 

10 ≤ Pr ≤ 103, 0.6 ≤ n ≤ 1.4, 0 ≤ ɛ ≤ 0.9 and an inclination angle ϕ from 0° up to 90°. The model 

of Ostwald-de Waele used here to simulate our non-Newtonian fluid. As a result, from the 

above survey we may extract the following: 

 The Nusselt number affected by the power law index n when all the other parameters kept 

the same. This effect is more vigorous for pseudo-plastic fluids than the others at high 

Rayleigh numbers. 

 The Nusselt number is not affected by Prandtl number except for pseudo-plastic fluids 

when Ra values are considerable (Ra ≥ 105) at the same values of ϕ and ɛ. These effects 

are really small to be negligible. 
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 The Nusselt number is depends on the Rayleigh number in which (this last one) drives the 

strengths of buoyancy force and when it sets with ɛ = 0.9 at ϕ = 0° (the vertical case) The 

best heat transfer could be found. 

 The Nusselt number is affected by the eccentricity rate wherein we increase it the Nusselt 

number grows up at the same set of Ra, Pr, and n, excluding when n is very weak for 

pseudo-plastic fluids (n ≤ 0.6) or very large for dilatant fluids (n ≥ 1.4) at ɛ = 0.6 and 

ϕ = 90° for low Rayleigh numbers (Ra ≤ 104). 

 The Nusselt number affected by the angle ϕ wherein we increase ϕ from the vertical state to 

the horizontal state the Nusselt number decreases. The best case among them all is at ϕ = 0°. 

Nomeclature 

Cp – specific heat capacity, [Jkg–1K–1]   
e – distance between the centers of cylinders, [m] 
g – gravity acceleration, [ms–2] 
K – consistency index of the power-law 
k – thermal conductivity, [Wm–1K–1] 
L – characteristic length (= Ro – Ri), [m]  
n – power-law index, [–] 
Nuave – average Nusselt number 
P – pressure, [Pa] 
Pr – Prandtl number, [–] 
Ra – Rayleigh number, [–] 
R – radius, [m] 
Ri – radius of the inner cylinder, [m] 
Ro – radius of the outer cylinder, [m] 
𝑅̅ – dimensionless radius, [–] 
RR – hydraulic radius ratio, [Ro/Ri] 
T – temperature, [K]  
Th – inner cylinder temperature, [K] 

Tc – outer cylinder temperature, [K] 
∆T – difference between hot and cold 

temperatures (= Th – Tc) 
u, v – radial and tangential velocities, [ms–1] 
x, y – cartesian co-ordinates 

Greek symbols 

α – thermal diffusivity, [m2s–1] 
β – volume coefficient of expansion, [K–1]  
γ – rate of strain tensor, [s–1] 
ɛ – eccentricity factor, [–] 
θ – dimensionless temperature, [–] 
µ – dynamic viscosity, [Nsm–2] 
µa – apparent viscosity, [–] 
µref – reference viscosity, [Nsm–2] 
ρ – density, [kgm–3] 
ϕ – orientation angle, [°]  
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