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 In this work, we consider variable order diffusion-wave equations. We choose 
variable order derivative in the Caputo sense. First, we approximate the unknown 
functions and its derivatives using Bernstein basis. Then, we obtain operational 
matrices based on Bernstein polynomials. Finally, with the help of these operation-
al matrices and collocation method, we can convert variable order diffusion-wave 
equations to an algebraic system. Few examples are given to demonstrate the ac-
curacy and the competence of the presented technique.
Key words: variable order diffusion-wave equations, Bernstein polynomials, 

operational matrix, collocation method

Introduction 

Fractional calculus (FC) can be used to simulate various real phenomena involving 
long memory accurately [1]. Many problems in various fiels such as physics, chemistry, biol-
ogy and engineering such as viscoelasticity and damping, diffusion equations, electromagnetic 
waves can be modelling via systems of fractional ordinary/ partial/ integro-differential equa-
tions [2-7]. In most cases, It is difficult to obtain exact solution of most ordinary/ partial/ inte-
gro-differential equations. Therefore, we must use of the approximate and numerical methods. 
There are several numerical methods for solving such equations, see [8-16].

Variable order derivative is a new definition, Samko and Ross [17], in FC which 
means the order is a function of time, space or other variables. Since derivative operator has a 
kernel of the variable order, it is not simply task to find the solution of such equations. Recently, 
several numerical and approximate methods have been presented to solve variable order of dif-
ferential equations (VODE). Yu and Erturk [18] applied a finite difference method to solve VO 
integro-differential equations. Jafari et al. [19] obtained the approximate solution of differential 
equations with variable order using operational matices. In [20, 21], the functional boundary 
value problems with variable order are solved by reproducing kernel method. Ganji and Jafari 
[22] applied Jacobi polynomials to obtain solution of multi VODE. Hassani and Naraghirad 
[23] solved variable-order time fractional Burgers equation via generalized polynomials. Hey-
dari et al. [24] obtained a approximate solution for VO diffusion-wave equation by Chebyshev 
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wavelets. Jiang and Guo [25] applied the reproducing kernel method to solve 2-D VO anoma-
lous sub-diffusion equation and see [26, 27].

The aim of this work is obtainig a numerical scheme to solve variable order diffu-
sion-wave equations (VODWE) by Bernstein polynomials (BP). 

We investigate the following type of VODWE:
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∂ω(x, t)χ(x, t)/∂xω(x, t) indicate the VO derivatives respect to space and time:
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Bernstein polynomials

The BP are important in numerous area of mathematics. These polynomails are posi-
tive and their sum is unit.

The nth degree BP:
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We can write Bernstein basis polynomials in the matrix form:
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Function approximation

We can approximate χ(x, t) ∈ L2([0.1]2) by the first n + 1 terms of BP:
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where ⟨.,.⟩ is the inner product.

Convergence analysis

Let Πn = span{Bi,n(x)Bj,n(t), i, j = 0, 1,..., n}. Suppose that χ(x, t) ∈ I = ([0.1]2) be a 
smooth function and χ ̄ (x, t) ∈ Πn is the best approximation of χ(x, t). We obtain an analytic ex-
pression for error.

In view of definition of the best approximation:
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inequality is true. Then by similar procedures as in [25, 28-30]:
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Since χ(x, t) is a smooth function on I, then there exist constants s1, s2, and s3:
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where τi are the roots of Chebyshev polynomials. Then we obtain:
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By using of the approximate χ(x, t) as eq. (8), we obtain:
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where χ* indicates the interpolating polynomial of degree n on I. Using eq. (9):
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Operational matrix 

Operational matrix of the integer order derivatives

The differentiation of vectors φ(t) and φ(x) can be given:
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where D is the (n + 1) × (n + 1) operational matrix for derivative based on BP. For l ≥ 2, where 
l is the order of derivative:
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The details of obtainning this matrix are given in [19].

Operational matrix of the VO derivative 

Here, we obtain the operational matrix of VO derivative for vector φ(t): 

	

( , ) ( , ) ( , )
1

( , ) ( , ) ( , )( ) [ ( )] [1   ]
x t x t x t

q T
nx t t

q
x x t

nt AT t A t t t t
t t t

ω ω ω

ω ω ωϕ −∂ ∂ ∂
= = …

∂ ∂ ∂


According to eq. (3), we take q = ⌈ω(x, t)⌉ and q < n, then:
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where Ψ and Y are the operational matrices for variable orders derivatives based on Bernstein 
polynomials. 

The method for solving eq. (1)

Substituting eqs. (8), (10)-(12) in eq. (1), we have:
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By solving system eq. (16), coefficients cij can be calculated. Finally, we obtain the 
approximate solution for eq. (1).

Test examples

We present three examples to show the efficiency of this method. We compare the 
exact and approximate solutions. Here the absolute errors are defined:

Error | ( , ) ( ) ( ) |, , [0,1]Tx t x t x tCχ ϕ ϕ= − ∈ (17)

Example 1. Consider the following VODWE:
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where ω(x, t) = sin(x, t). The exact solution is χ(x, t) = xt2. The numerical results using the pre-
sented method are shown in fig. 1 and tab. 1 show the absolute error for various ω(x, t). 

(a)
(b)

1.0

0.5

0.0
0.0

0.5

1.0
0.0

0.5

1.0

x

t

χexact( , )x t

0.0

0.5

1.0
0.0

0.5

1.0

t

x

2 × 10
–16

1.5 × 10
–16

1 × 10
–16

5 × 10
–17

Figure 1. (a) The exact solution, (b) the absolute errors, n = 3 

Table 1. Comparison absolute errors for various ω(x, t), n = 3

 (x, t) ω = [1–(xt)4]/5 ω = x2t2 ω = cosxt 

 (0.1, 0.1) 1.51788e–18 1.30104e–18 8.67362e–19 

 (0.2, 0.2)  6.93889e–18  6.93889e–18 5.20417e–18 

 (0.3, 0.3)  0.00000  6.93889e–18 6.93887e–18 

 (0.3, 0.4)  1.38779e–17  1.38779e–17 1.38778e–17

 (0.5, 0.5) 0.00000  1.38779e–17  0.00000

 (0.6, 0.6)  2.77556e–17  0.00000  8.32667e–17

 (0.7, 0.7)  0.00000  5.55112e–17  0.00000

 (0.8, 0.8)  1.11022e–16  0.00000 1.11022e–16 

 (0.9, 0.9)  0.00000  0.00000  0.00000
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Example 2. Consider the following VODWE:
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where ω(x,t) and υ(x,t) are 1 + sin(xt) and 1 + cos(xt), respectively. For solving this example, 
we applied the presented method. The exact solution [χ (xt) = x2t] and the absolute errors are 
shown in fig. 2.
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 Figure 2. (a) The exact solution, (b) the absolute errors, n = 5 

Example 3. Consider the following VODWE:
( , ) 2

2 2
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where ω(x,t) = 1– sin (xt). The exact solution is χ (xt) = x2et. We applied the presented method 
and obtained approximate solution. The obtained results are plotted in fig. 3. Table 2 shows the 
absolute errors.
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Figure 3. (a) The exact solution, (b) the absolute errors, n = 5 
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Table 2. Absolute errors for various n [ω(x, t) = 1 – sin(x, t)] 
 (x, t)  n = 2 n = 3  n = 4  n = 5

(0.1, 0.1) 0.00088 1.04991e–4  5.51477e–6 2.51701e–6

(0.2, 0.2) 0.00299  3.27665e–4 2.20289e–5 1.34078e–6

(0.3, 0.3)  0.00530  4.95985e–4 3.28924e–5 2.04508e–6

(0.4, 0.4)  0.00666  4.93978e–4  3.05810e–5 2.01647e–6

(0.5, 0.5)  0.00611  3.33595e–4  2.31369e–5 1.72872e–6

(0.6, 0.6) 0.00317 1.56402e–4  2.02252e–5 1.30305e–6

(0.7, 0.7) 0.00170 1.58402e–4  1.81164e–5 6.00023e–6

(0.8, 0.8) 0.00670  4.30336e–4  2.91337e–8 3.81590e–6

(0.9, 0.9) 0.00818 7.04763e–4 3.44797e–5 1.84695e–4

Conclusion

 In this work, the numerical solution of VODWE using operational matrices based on 
Bernstein polynomials are investigated. We approximated the unknown function and obtained 
operational matrices of variable orders derivatives based on Bernstein polynomials. Then, using 
operational matrices and collocation method, we transferred VODWE to a system of algebraic 
equations and obtained the numerical solution of this system. Finally numerical examples are 
presented to demonstrate the high performance of the presented method. We saw that the nu-
merical solution obtained converges to the analytical solution.
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